高一化学 春季班 学案

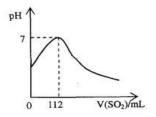
目录

第 1	讲	硫单质和硫化氢	.2
第 2	讲	二氧化硫和酸雨有关计算	.6
第3	讲	硫酸和硫酸盐1	10
第 4	讲	硫的综合复习1	4
第5	讲	氮气和氮氧化物2	20
第6	讲	氨气和铵盐2	26
第 7	/ 讲	硫和氮的综合复习3	34
第9	讲	化学反应速率4	10
第 1	10 讲	- 化学平衡4	15
第 1	1 讲	化学平衡移动4	19
第 1	2 讲	电解质的基本概念5	56
第 1	3 讲	电离平衡6	50
第 1	5 讲	· 水的离子积和 pH 值计算6	5 5
第 1	6讲	· 盐类水解7	70
第 1	7讲	电解池7	15
第1	8讲	- 电解质溶液综合练习8	30

第1讲 硫单质和硫化氢

[知识梳理]

一、硫
1、硫原子结构示意图:。电子式:。
[补充]在周期表中位置:。
2、单质硫俗称。是一种
单质硫的用途:。
3、硫的化学性质(填写方程式):
①与金属反应:
与Fe反应:
与Cu反应:
②与氢气反应:
③与氧气反应:
④与碱反应:
4、硫与氧气反应,硫元素的化合价从
应,下列生成的硫化物不正确的是。
$a.Na_2S$ $b.Al_2S_3$ $c.FeS$ $d.CuS$
二、硫化氢
1、硫化氢的电子式:。物理性质:。
2、硫化氢的化学性质:
硫化氢中的硫呈价;为最低价,故具有。
写出下列化学方程式:
硫化氢分解:。


完全燃烧:。
不完全燃烧:。
与X ₂ :。
与SO ₂ :。
与硫酸铜溶液:。
3、实验室制备 H ₂ S 的化学方程式:
能否用启普发生器?。能否用浓硫酸干燥?。
专题练习]
一、硫的相关练习:
1. 如图是硫原子的原子结构示意图,下列对硫原子的叙述错误的是()
A. 硫原子核外有三个电子层,最外层有 6 个电子
3. 硫原子核内有 16 个质子
C. 硫原子得到两个电子后可变成硫离子
D. 硫原子在化学反应中容易失去电子
2. 下列说法不正确的是()
A. 硫是一种淡黄色的能溶于水的晶体
3. 硫的化合物常存在于火山喷出的气体中和矿泉水里
C. 硫与氧最外层电子数相同
D. 硫在空气中的燃烧产物是二氧化硫,在纯氧中的燃烧产物是三氧化硫
3. 下列说法正确的是()
A. 硫在纯氧中燃烧发出明亮的蓝紫色火焰 B. 铜和硫反应强热条件下可生成硫化银
C. 硫粉与铁粉的反应是吸热反应 D. 硫与非金属反应时一定表现还原性
4、下列物质中不能由单质直接化合生成的是()
①CuS ②FeS ③SO ₃ ④H ₂ S ⑤FeCl ₂
A. ①②③⑤ B. ①③⑤ C. ①③⑤ D. 全部
5. 在一定条件下,下列物质能与硫发生反应,且硫作为还原剂的是()
A. Cu B. H_2 C. Fe D. O_2
5. 对于反应 $3S+6KOH \xrightarrow{\triangle} 2K_2S+K_2SO_3+3H_2O$,下列说法正确的是()

	Α.	S是氧化剂	门,KUH 定.	V_101/10				
	В.	若 3mol 研	流完全反应,	则反应中共	转移了 4mol	电子		
	C.	还原剂与	氧化剂的质量	量比是 2:1				
	D.	氧化产物	和还原产物的	的物质的量之	之比为3:2			
7.	不能	说明氯气的	的非金属性比	比硫强的是(
	A.	Cl ₂ 与H ₂ ラ	光照爆炸,而	而硫与氢气反	反应需加热至	硫气化		
	В.	Na ₂ S +2Ho	Cl → 2NaC	Cl+H ₂ S↑				
	C.	HCl比H ₂	S 稳定					
	D.	酸性: HC	ClO ₄ >H ₂ SO ₄	ļ				
8.	将 8g	g 硫在 16g	氧气中充分	燃烧后,所征	得气体在标准	主状况下的 。	总体积为 ()	
	A.	22.4L	B. 11.2	L (C. 5.62L	D. 15L	,	
9.	0.05r	mol 某单质	与 0.8g 硫在	三一定条件下	完全反应,记	亥单质可能	是()	
	A.	H_2	B. O ₂		C. K	D. 2	Zn	
10、	硫素	蒸汽折合标	况下的密度	是 5.714 克/	升,所以硫蒸剂	气的分子式	应该是:()	
	A. S	S.	B. S ₂ .	C. S ₄ .	D. S _{6.}			
				# // H //				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
11.	硫迪	通常是一种.		_色的晶体,	俗称	,它	溶于水,	溶于
							溶于水, 	
<u>一</u> 有			的一种主要					
<u>一</u> 有	流化磁 硫化	炭,写出硫 七氢的相关	的一种主要 练习	用途				0
二页 二、 1.	流化磁 硫化 硫化 近期	炭,写出硫 化氢的相关 ,北京大学	的一种主要 练习 学的两位教持	用途	.体心肺血管			o
二 二、 1. 管耳	流化碳 硫化 硫化 近期 計能	炭,写出硫 化氢的相关 ,北京大学 具有重要作	的一种主要 练习 学的两位教持	用途 受率先发现人 述正确的是	.体心肺血管			o
二、 1. 管耳 A .	流化磁 硫化 近期 动能具 硫化	炭,写出硫 化氢的相关 ,北京大等 具有重要作 公氢分子很多	的一种主要 练习 学的两位教授 用。下列叙 稳定,受热x	用途 受率先发现人 述正确的是 唯分解	.体心肺血管	中存在微量		o
二、 二、 1. 管环 A. B.	流化 硫 近 能 硫 期 手 化 化	炭,写出硫 化氢的相关 ,北京大学 具有重要作 公氢分子中,	的一种主要 练习 学的两位教授 用。下列叙 稳定,受热x	用途 受率先发现人 述正确的是 唯分解 最外电子层者	.体心肺血管 ()	中存在微量		o
二、 二、 1. 管耳 A. B.	流化碱 近 前 硫 硫 斯 鄖 化 化 硫	炭,写出硫 化氢的相关 ,北京大学 具有重要作 公氢分子很 公氢分子中质	的一种主要 练习 学的两位教授 用。下列叙 稳定,受热对 稳定,受热对 所有原子的最 溴水,溴水补	用途 受率先发现人 述正确的是 唯分解 最外电子层者 退色	.体心肺血管 ()	中存在微量 结构		о
二 1. 管TA. B. C. D.	流化 硫 近 前 硫 将 硫化 斑 期 郹 化 化 硫 化	发,写出硫 化氢的相关 , 北京 要 () , () 。 ()	的一种主要 练习 学的两位教授 用。下列叙 稳定,受热对 稳定,受热对 所有原子的最 溴水,溴水补	用途 受率先发现人 述正确的是 唯分解 最外电子层者 退色 方程式是 H ₂ \$.体心肺血管 () 『达到 8 电子	中存在微量 结构		о
二、 二、 1. 管 A. B. C. D.	流化 硫 近 肋 硫 硫 将 硫 硫化 研 期 』 化 化 硫 化 化	发,写出硫 化氢的相关 点, 北重 子。 是, 有重 子。 是, 子。 是, 是, 是	的一种主要 练习 学的两位教教 用。下列叙 稳定,更是,所有,以来, 人。 人。 人。 人。 人。 人。 人。 人。 人。 人。 人。 人。 人。	用途 受率先发现人 述正确的是 唯分解 最外电子层者 退色 方程式是 H ₂ S	.体心肺血管 () 『达到 8 电子 S→2H ⁺ +S ^{2−}	中存在微量结构		о
二、 二、 1. 管 A. B. C. D.	流化 疏 近 旅 硫 将 硫 硫 有化 硫 期 』 化 化 硫 化 4 0 臭	发,写出硫 化氢 北 重 子 子 强 包 圣 圣 圣 圣 圣 圣 圣 圣 圣 圣 圣 圣 圣 圣 圣 圣 黑 军 气味	(あ一种主要)(练习(集)(集)(集)(集)(共)(集)(共)(共)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)<	用途 受率先发现人 述正确的是 唯分解 最外电子层者 退色 方程式是 H ₂ S	、体心肺血管 () 『达到 8 电子 S→2H ⁺ +S ^{2−} C. 有書	中存在微量结构	·硫化氢,它对调	•
二 1. 管邛 A. B. C. D. 2、A. 3.	流化 疏 近 旅 硫 将 硫 布 有 下化 体 妍 郹 郹 化 化 硫 化 亻 臭 列	发,写出硫化氢 化氢 化氢 化氢 化 重 子 子 通 电 是 不 蛋 不 是 不 是 不 是 不 是 , 有 , 一	(あ一种主要)(练习(集)(集)(集)(集)(共)(集)(共)(共)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)(大)<	用途 受率先发现人 述正确的是 唯分解 最外电子层者 退色 方程 () 性 可燃性 更可燃性 更可燃度的是	.体心肺血管 () ß达到 8 电子 S→2H ⁺ +S ^{2−} C. 有書	中存在微量 结构	·硫化氢,它对调	——。 节心血

- A. 浓硝酸 B. 稀硫酸 C. 稀硝酸 D. HCIO 5. 下列试剂能检验 H_2S 气体的是 () A. 氢氧化钠溶液 B. 澄清石灰水 C. 醋酸铅溶液 D. 稀盐酸 6. 下列反应中,调节反应物用量或浓度不会改变反应产物的是() A. 硫化氢在氧气中燃烧 B. 铁在硫蒸气中燃烧 C. 二氧化碳通入石灰水 D. 木炭在空气中燃烧 7. .在一定条件下,将 70ml H₂S 气体和 90mlO₂ 混合,点燃并使其均反应完。再恢复到原来 条件 则生成 SO₂ 生成气体的体积为() A. 70ml C. 55ml D. 50ml B. 60ml 8.常温常压下,将 $50mL H_2S$ 和 O_2 的混合气体点燃,充分反应后恢复到原来状态,气体体积 变为 5mL, 该 5mL 气体的成分可能是() A. $H_2S_{\searrow}SO_2$ B. H_2S C. SO_3 D. O_2 9. 以下集气装置中不正确的是() (液体为 H₂O) (试管口为棉花) (液体为 H₂O)
- $A. H_2S$ 的收集
- B. O₂的收集
- C. NH₃或 H₂的收集
- D. HCl 或 Cl₂ 的收集
- 10. 在标准状况下,向 100mL 氢硫酸溶液中通人二氧化硫气体,

溶液 pH 变化如图所示,则原氢硫酸溶液的物质的量浓度为()

- A. 0.5mol/L
- B. 0.05mol/L
- C. 1mol/L
- D. 0.1mol/L

- 11. 将 8.8 g FeS 固体置于 200 ml 2.0 mol/L 的盐酸中,以制备 H_2S 气体。反应完全后,若溶液中 H_2S 的浓度为 0.10 mol/L,假定溶液体积不变,试计算:
- (1)收集到的 H₂S 气体的体积(标准状况);
- (2)溶液中 Fe²⁺和 H⁺的物质的量浓度。

第2讲 二氧化硫和酸雨有关计算

[知识梳理]

一、二氧化硫

1、二氧化硫是一种具有气味的气体,溶于水(1体积水可溶约体积),
水溶液称为,具有漂白性,其漂白原理是,
SO ₂ 的水溶液亚硫酸,其电离方程式为。二氧化硫有毒。
2、写出下列化学方程式:
与 O ₂ 反应:
与 H ₂ S:
与 X ₂ 、H ₂ O:
$SO_3^{2-}+X_2+H_2O$ \longrightarrow
3、二氧化硫不与 BaCl ₂ 水溶液反应,但若先通入氨气后就会反应,简答原
因:。若同时加入氧气、氯气或硝酸也会有沉淀,
简答原因:。
4、实验室制备 SO ₂ 化学方程式:。反应中
可否使用浓硫酸?。若产生 SO ₂ 少,可能的原因为。可否使用启
普发生器?。
6、酸雨通常是指降水的 pH,酸雨的成因很复杂,酸雨中含有、和其
他一些有机酸,但以为主。
请写出该主要成分形成时的化学方程式(两种方式)
方式 1:
方式 2:
请解释酸雨放置时,pH 发生变化的主要原因。
而造成酸雨的二氧化硫气体主要来自。
7、鉴别两瓶失去标签的无色气体 CO_2 和 SO_2 的方法是。
8、能否用品红溶液鉴别 SO ₂ 和 Cl ₂ ,为什么?。

	秘里的相关计算	(nu)
—``	酸雨的相关计算	(pn)

1、水的电离方程式是:水的离子积常数表达式为	。常温下,
水的离子积为, 水所电离出的氢离子浓度为, pH=_	,当温
度升高时,水的离子积。(填增大或减小)pH7(填大于或小于)	
2、溶液 pH 的计算公式:	
3、溶液 pH 与溶液酸碱性的关系	
溶液的酸碱性是根据溶液中 c (H^+)和 c (OH^-)的相对大小来界定的 。在常温(25°0	2)下
(1) 中性溶液: c (H ⁺)c (OH ⁻), c (H ⁺)1×10 ⁻⁷ mol/L, pH=	
(2) 酸性溶液: c (H ⁺)c (OH ⁻), c (H ⁺)1×10 ⁻⁷ mol/L, pH=	
(3) 碱性溶液: c (H ⁺)c (OH ⁻), c (H ⁺)1×10 ⁻⁷ mol/L, pH=_	
4、常温下,通过计算填空	
(1) c(H+)=1×10-4mol/L, 溶液 pH=	
(2) c (OH ⁻)=1×10 ⁻³ mol/L,溶液 pH=	
(3) pH=3 的溶液, c(H+)=, c(OH-)=	
(4) pH=11 的溶液, c(H ⁺)=, c (OH ⁻)=	
(5) 在 0.05mol/LH ₂ SO ₄ 溶液中, c (H ⁺)=, c (OH ⁻)=	,
(6) 在 0.001mol/LNaOH 溶液中,c (OH ⁻)=,c (H ⁺)=	,
(7) 在 0.1mol/LKNO ₃ 溶液中,c (OH ⁻)=,c (H ⁺)=	,
(8) $c(H^+)=1\times10^{-3} \text{mol/L} \text{ pH}=; c(OH^-)=1\times10^{-3} \text{mol/L} \text{ pH}=;$	°
(9) 0.05 mol/L 硫酸溶液 pH=; 0.4 克 NaOH 溶于水配成 100 n	ıL 溶液,
pH=	
(10) pH=14 的氢氧化钡溶液,c= mol/L,c (Ba ²⁺)= mol/L。	
[专题练习]	
1. 酸雨的形成主要是由于 ()	
A. 大气中二氧化碳含量增多 B. 汽车排出大量尾气	
C. 工业上大量燃烧含硫燃料 D. 森林遭乱砍滥伐,破坏了生态平衡	
2. 下列溶液中能用来区别 SO ₂ 和 CO ₂ 气体的是()	
①澄清的石灰水 ②溴水 ③酸性高锰酸钾溶液 ④氯化钡溶液 ⑤品红溶液	
A (1)4)5) B (2)3)5) C (1)2)3 D (2)3)4)	

3. 右图中, 锥形瓶内盛有气体 X, 滴管内盛有液体 Y, 若挤压 滴管胶头, 使液体 Y 滴入瓶中, 振荡, 一会可见小球 a 鼓气, 气体 X 和液体 y 不可能是 () A. 氨气和水 B. SO₂和 NaOH 浓溶液 C. CO₂ 和稀硫酸 D. 氯化氢和 NaNO₃ 稀溶液 4. 若要从 CO_2 气体中除去少量 SO_2 ,最好使混合气体通过() A. 盛 NaOH 溶液的洗气瓶 B. 盛 KMnO4 酸性溶液的洗气瓶 C. 盛品红溶液的洗气瓶 D. 盛饱和 Na₂CO₃溶液的洗气瓶 5. 将 SO₂ 通入 BaCl₂ 溶液至饱和,未见有沉淀,继续通入另一种气体 X 仍无沉淀,则 X 可 能是() A. CO_2 B. NH_3 C. Cl_2 D. H_2S 6. 下列变化中可以说明 SO₂ 具有漂白性的是() A. SO₂通入酸性高锰酸钾溶液中红色褪去 B. SO₂通入品红溶液红色褪去 C. SO₂通入溴水溶液中红棕色褪去 D. SO₂ 通入氢氧化钠酚酞的混合溶液红色褪去 7. 实验室制备 SO₂ 气体,下列方法可行的是() A. Na₂SO₃溶液与HNO₃ B.Na₂SO₃ 溶液与稀盐酸 D. Na₂SO₃ 固体与浓 H₂SO₄ C. Na₂SO₃与 H₂S 溶液 8、除去 SO₂ 中混有的 HC1 气体,可选用的试剂是() A. 石灰水 B. 浓硫酸 D. 饱和 Na₂SO₃溶液 C. 饱和 NaHSO3 溶液 9. 对于 SO_2 与 SO_3 下列说法正确的是 () A. 标准状况下等体积含硫量相等 B. 都具有漂白性及消毒灭菌作用 C. 其水溶液都是二元强酸 D. 都能和水反应 10. 下列化学反应方程式中不正确的是()

C. H_2SO_3 \Longrightarrow SO_2+H_2O D. 在催化剂存在、加热条件下 $2SO_3$ \Longrightarrow $2SO_2+O_2$

A. $SO_2+H_2O \rightleftharpoons H_2SO_3$ B. $SO_3+H_2O \rightleftharpoons H_2SO_4$

11. 有一瓶无色气体,可能含有 H₂S、CO₂、HBr、HCl、SO₂中的一种或几种。向其中加入 氯水,得到无色透明溶液。把溶液分成两份:向一份中加入氯化钡一盐酸混合溶液,出现白 色沉淀;向另一份中加入硝酸银一硝酸混合溶液,也有白色沉淀。结论:①原气体中肯定有 SO2: ②原气体中肯定没有 H2S、HBr; ③原气体中肯定有 HCl; ④不能肯定原气体中是否 有 HCl; ⑤原气体中肯定没有 CO₂。以上结论中正确的是()

A. (1)(2)(3)(5)

B. (1)(2)(3)

C. (1)(2)(4) D. (1)(2)

12. 某混合气体 G 可能含有 CO、CO₂、SO₂、H₂O 等气体,用 a. 无水 CuSO₄、b. 澄清石 灰水、c. 灼热 CuO、d. 碱石灰、e. 品红溶液、f. 酸性高锰酸钾溶液等药品可将其一一检 出,检出的正确顺序是()

A. $G \rightarrow a \rightarrow e \rightarrow b \rightarrow f \rightarrow d \rightarrow c$ B. $G \rightarrow c \rightarrow d \rightarrow b \rightarrow e \rightarrow f \rightarrow a$

C. $G \rightarrow a \rightarrow e \rightarrow f \rightarrow b \rightarrow d \rightarrow c$ D. $G \rightarrow b \rightarrow e \rightarrow f \rightarrow a \rightarrow d \rightarrow c$

13. 酸雨主要是燃烧含硫燃料时释放出 SO₂ 所造成的。现取一份雨水样品,每隔一定的时间 测定其 pH 值,测定结果见附表:

附表: 雨水样品 pH 值随时间的变化值

测试时间(h)	0	1	2	4	8
雨水样品 pH 值	4.73	4.62	4.56	4.55	4.55

试说明雨水样品 pH 值减小的原因______

第3讲 硫酸和硫酸盐

[知识梳理]

•	硫酸和硫酸盐

1、	纯硫酸是一种色的液体,挥发,在水中溶解性,浓硫酸稀释时产							
生力	大量的热。常用浓硫酸作某些气体的干燥剂,这是因为它具有性,但是,浓硫酸							
不育	七干燥等气体。(浓硫酸能够干燥 SO ₂ 吗?)							
2、	下列实验或事实主要表现了浓硫酸的什么性质。							
(1)	浓硫酸与碳共热反应时,呈现;							
(2)	浓硫酸与铜共热反应时,呈现;							
(3)	浓硫酸可作气体干燥剂,呈现;							
(4)	浓硫酸与氯化钠反应制取氯化氢时,呈现;							
(5)	浓硫酸使蔗糖变黑,并有刺激性气味的气体产生,呈现。							
3、7	稀释浓硫酸时,一定要把慢慢地沿着容器壁注入中,并且要用玻璃棒							
	不断地搅拌。							
4、	当不小心在皮肤上沾上浓硫酸后,应该先							
5、	当 2mol 浓硫酸和足量的铜反应产生的 SO_2 ($<$ 、 $>、=$)1mol。为什么?							
6、	6、浓硫酸滴到蓝色石蕊试纸上有什么现象:。							
7、	有同学说浓硫酸有强氧化性,稀硫酸无氧化性。是否正确?。							
8、	取 20 克蔗糖(C ₁₂ H ₂₂ O ₁₁)置于 200 毫升烧杯中,加入 2 毫升水,搅拌均匀。然后再加入 20							
	毫升 98%的浓硫酸,迅速搅拌后,静置。							
(1)	加入2毫升水的目的是							
(2)	在实验中看到如下现象,请分别给予解释或写出有关的化学方程式。							
	① 蔗糖变黑。原因是							
	② 固体体积膨胀,并产生酸味的刺激性气体。反应的化学方程式为:							
(3)	由本实验得出,浓硫酸的特性有。							
9、	医疗上的"钡餐"的主要成分是。生石膏的化学式,熟石膏的化学							
式为	为,熟石膏跟水混合后很快凝结,重新变成石膏,利用这一性质,在医疗上来							
生工化	F							

末	为色,用是	途有。	明矾化学	式为	, ۱	明矾常用作净水剂的原因
是_				。绿矾化学式	式:	,用途:。
芒	硝化学式:	,无水芒硝	可作	o		
10	、简述 SO ₄ 2离-	子的检验方法是				
[专	题练习]					
1.	下列变化中, 能		俊的事实是	: ()		
A.	能使石蕊试液图		B. 育		反应制码	流化氢
C.	能跟氯化钠反应	立制氯化氢	D. 自		生氢气	
2.	在常温下,下列	可感放在領	失制容器或	铝制容器中	的是()
A.	盐酸	B. 稀硫酸	C. ¾	农硫酸	D. 硫	酸铜溶液
3.	右图是硫酸试剂	川瓶标签上的部分	分 内容。据	此下列说法	中, 正确	确的是()
A.	该硫酸可以用表	来干燥硫化氢气	体			硫酸 化学纯 (CP) (500mL)
В.	1 mol Zn 与足量	量的该硫酸反应流	生 2 g H ₂	!		品名: 硫酸 化学式: H ₂ SO ₄
C.	配制 200 mL4.6	i mol/L 的稀硫酸	是需取该硫	酸 50 mL		相对分子质量: 98 密度: 1.84g • cm ⁻³
D.	若不小心将该研	流酸溅到皮肤上	, 应立即用	引 NaOH 溶液	沪冲洗	质量分数: 98%
4.	下列操作不能区	区别浓硫酸与稀矾	流酸的是 ()		
A.	分别加入铁		B. 5	分别加入蔗糖	Ī	
C.	分别加入烧碱		D. 5	分别加入铜片	、加热	
5.	下列关于浓硫酸	俊的叙述中,正 硕	角的是()		
A.	浓硫酸具有吸力	大性,因而能使	蔗糖炭化			
В.	浓硫酸在常温	下可迅速与铜片	反应放出二	二氧化硫气体		
C.	浓硫酸是一种二	F燥剂,能够干/	架氨气、氢	气等气体		
D.	浓硫酸在常温	下能够使铁、铝	等金属形成	戈 氧化膜而钝	化	
6.	将下列溶液置于	一敞口容器中,沟	容液质量会	:增加的是()	
A.	浓硫酸	B. 稀硫酸	C.	浓盐酸	D.	浓硝酸
7.	铜粉放入稀硫酸	俊溶液中,加热 质	 舌无明显现	息 象发生。当	加入一种	益后,铜粉的质量减少,
溶剂	夜呈蓝色,同时	有气体逸出。该	盐是()		
Α.	$Fe_2(SO_4)_3$	B. Na ₂ CO ₃		C. FeSO	4	D. KNO ₃

8. 卜列各组气体,实验至可用硫酸制即	\mathbf{Q} ,乂能用浓 $\mathbf{H}_2\mathbf{SO}_4$ 十燥的是()
A. HCl、HBr、HI	B. H ₂ S、CO ₂ 、H ₂
C. H ₂ , SO ₂ , HCl	D. NH_3 , HF , H_2
9. 为方便某些化学计算,有人将 98%的	的浓硫酸表示成下列形式,其中合理的是()
A. H ₂ SO ₄ ·1/9 H ₂ O	B. $H_2SO_4 \cdot H_2O$
C. H ₂ SO ₄ ·SO ₃	D. SO ₃ ·H ₂ O
10. m g 铜与足量浓 H_2SO_4 共热时完全	
的量是()	
A. $\frac{m}{32}$ mol B. $\frac{98n}{22.4}$ g	C. $\frac{m}{64}$ g D. $\frac{196n}{22.4}$ g
11. 二氧化硫的催化氧化是放热反应。	下列关于接触法制硫酸的叙述中正确的是()
A. 为防止催化剂中毒,炉气在进入接	触室之前需要净化
B. 在接触室内反应温度选定在 400℃~	500℃,SO ₂ 可以完全转化为 SO ₃
C. 为防止污染大气, 从吸收塔出来的	尾气常用水吸收
D. 为提高 SO ₃ 的吸收效率,用稀硫酸	代替水吸收 SO ₃
12. 为检验 Na ₂ SO ₃ 溶液中是否含有 Na	₂ SO ₄ 应选用的试剂是()
A. BaCl ₂ 溶液 B	. BaCl ₂ 溶液、稀盐酸
C. BaCl ₂ 溶液、稀硝酸 D	. BaCl ₂ 溶液、稀硫酸
13. 只用一种试剂就能鉴别 Na ₂ S、Na ₂ s	SO ₃ 、Na ₂ CO ₃ 、Na ₂ SO ₄ 的是()
A. BaC ₂ 溶液 B. 盐酸 C	. 品红溶液 D. NH ₄ Cl
14. 一种酸性溶液中加入 BaCl ₂ 溶液,	有白色沉淀生成,则这种溶液中()
A. 一定含有 SO ₄ ²⁻ B.	一定含有 Ag ⁺
C. 一定同时含有 Ag^+ 和 $SO^{2^-}_4$ D.	一定含有 Ag ⁺ 或 SO ₄ ²⁻ ,或同时含有 Ag ⁺ 和 SO ₄ ²⁻
15. 有一瓶 Na ₂ SO ₃ 溶液,由于它可能部	部分被氧化,某同学进行如下实验: 取少量溶液,滴
入 Ba(NO ₃) ₂ 溶液,产生白色沉淀,再基	加入足量稀硝酸,充分振荡后,仍有白色沉淀。对此
实验下述结论正确的是()	
A. Na_2SO_3 已部分被空气中的氧气氧化	
B. 加入 Ba(NO ₃) ₂ 溶液后,生成的沉淀	中一定含有 BaSO ₄
C. 加硝酸后的不溶沉淀是 BaSO ₄	

D. 加硝酸后的不溶沉淀是 BaSO₃

16. 试判断下列八种情况分别属于硫酸的哪种性质?
(A) 脱水性; (B) 不挥发性; (C) 强酸性; (D) 二元酸; (E) 氧化性; (F) 吸水性
(1) 铜和浓 H ₂ SO ₄ 加热,产生 SO ₂ 气体. ()
(2) 在硫酸盐中有 NaHSO4 这样的酸式盐()
(3) 在烧杯中放入蔗糖,滴入浓 H ₂ SO ₄ 变黑. ()
(4) 在 NaCl 中加入浓 H ₂ SO ₄ ,加热,产生 HCl 气体()
(5) 在稀 H ₂ SO ₄ 中放入锌粒就产生 H ₂ . ()
(6) 用稀 H_2SO_4 清洗金属表面的氧化物. ()
(7) 浓 H ₂ SO ₄ 敞口久置会增重. ()
(8) 浓 H ₂ SO ₄ 不能用于干燥 H ₂ S 气体. ()

第4讲 硫的综合复习

[考点梳理]近3年等级考一模试题及合格考试卷选题

[考点 1]二氧化硫的漂白性:漂白性整理

类型	物质	特点
氧化型	HCIO	强氧化性,彻底,不可逆
加合性	SO ₂	加成反应,可逆,不彻底,不
		能漂白酸碱指示剂
吸附型	活性炭	较大表面积,吸附有色物质

	氧化型	HCIO	强氧化性,彻底,不可逆			
	加合性	SO ₂	加成反应,可逆,不彻底,不 能漂白酸碱指示剂			
Į	吸附型	活性炭	较大表面积,吸附有色物质			
[基	基础练习]					
1.	下列变化中可以说明 SO ₂ 具	L有漂白性的是()				
	A. SO ₂ 通入酸性高锰酸钾	₽溶液中红色褪去 B. SO₂↓	通入品红溶液红色褪去			
	$C. SO_2$ 通入溴水溶液中红	棕色褪去				
	$D. SO_2$ 通入氢氧化钠酚酞	的混合溶液红色褪去				
2.	下列物质能使品红溶液褪色	1的是()				
	$\bigcirc Cl_2 \bigcirc Na_2O_2 \bigcirc Ca(ClO)_2 \bigcirc$	①活性炭 ⑤SO2				
	A. 2345	B. 123 C. 1	④⑤ D. 全都可以			
3.	下列说法正确的是					
	A. SO_2 具有漂白性,所以它能使品红溶液、溴水、酸性 $KMnO_4$ 溶液、石蕊溶液褪色					
	B. 能使品红溶液褪色的物质不一定是 SO ₂					
	$C.$ SO_2 、漂白粉、活性炭	、Na ₂ O ₂ 都能使红墨水褪色,	且原理相同			
	D. 等物。质的量的 SO_2 和 O_2	Cl ₂ 混合通入装有湿润的有色	布条的集气瓶中,漂白效果更好			
4、	. 下列五种有色溶液与 SO ₂ 作	用均能褪色,其实质相同的是	是			
	①品红溶液;②酸性 KMn					
	④滴有酚酞的 NaOH 溶液					
	A. ①④	B. ①②③				
	C. 235	D. 34				
г ப	垮点 2]二氧化硫的性质(漂 白	M				
-			5. 4. 从 苯甲层ル 次百			
1.H ₂ S 中的 S 为						
性	性,但以为主(H ₂ SO ₃ , Na ₂ SO ₃ 等类似 SO ₂)。两者发生的反应为:					
_						
	SO ₂ 类似 HClO,具有					
3	nH < 的雨水为酸雨	i. 由 SO。形成酸雨的反应为。	. 久置的酸雨			

1.H ₂ S	中的5万_		有很強的	12	王。SO ₂ 中	的 8 刃	175,	 根具氧化、	
性,	但以	为主	$(H_2SO_3,$	Na ₂ SO ₃	等类似	SO_2).	两者发生	的反应	为:
			o						
2.SO ₂	类似 HClO	,具有	性,但	旦可恢复。					
3. pH	[<	的雨水为	酸雨,由S	O ₂ 形成酶	後雨的反 应	拉为:		,久置的	內酸雨

pH 。可用生石灰吸收 SO₂,最终转化为 。

[基础练习]

- 1. 能与 SO₂ 反应,且 SO₂ 体现氧化性的是
 - A. Ba(OH)₂ B. 溴水
- C. 浓硫酸 D. H₂S
- 2. 下列反应,与硫酸型酸雨的形成肯定**无关**的是
 - A. $SO_2+2H_2S \longrightarrow 3S+2H_2O$ B. $SO_2+H_2O \Longleftrightarrow H_2SO_3$

- C. 2SO₂+O₂ 催化剂 2SO₃
- D. $SO_3+H_2O \longrightarrow H_2SO_4$
- 3. 将 SO_2 气体逐渐通入某溶液,溶液 pH 随通入 SO_2 气体体积变化如图所示,该溶液是 PH

- A. 氨水
- B. 亚硫酸钠溶液
- C. 氢硫酸
- D. 氯水
- 4. 室温下, 0.1 mol 下列物质分别与 1L0.2 mol/LNaOH 溶液反应, 所得溶液 pH 最小的是
 - A. SO₃
- B. CO_2
- C. Al₂O₃
- D. SO_2

[考点 3] (浓) 硫酸和硫酸盐

1.浓硫酸与 Cu 反应时显性,黑面包实验中(浓硫酸与蔗糖、少量水),显_ 性。

2.硫酸的离子的检验:取样,加入盐酸酸化的氯化钡,若出现白色沉淀,则含 SO_4^{2-} ,指出 上述文字的错误。

[基础练习]

1. 下列鉴别浓硫酸和稀硫酸的操作与结论有误的是

	操作	结论
A 分别加入金属铝片		产生刺激性气味者为浓硫酸
В	分别加入到盛水的试管中	剧烈放热者为浓硫酸
С	取等体积样品,称量质量	质量大者为浓硫酸
D	分别滴在火柴梗上	变黑者为浓硫酸

2.检验氧化铁黄(FeOOH)沉淀洗涤是否完全的方法是:向最后一次洗涤液中加入

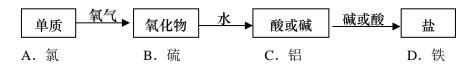
试剂, 若出现 现象则表明未洗涤完全。

主要反应: 4FeSO₄+O₂+8NaOH→4FeOOH +4Na₂SO₄+2H₂O

- 3、下列四种溶液中一定存在 SO2T的是
 - A. 向甲溶液中加入 BaCl₂溶液,产生白色沉淀
 - B. 向乙溶液中加入 BaCl₂溶液,有白色沉淀,再加入盐酸,沉淀不溶解
 - C. 向丙溶液中加入盐酸。使之酸化,再加入BaCl2溶液,有白色沉淀产生
 - D. 向丁溶液中加入硝酸使之酸化,再加入硝酸钡溶液,有白色沉淀产生

[练习]

1,	[嘉気	定]将	 子二氧化硫	气体通入	KIO3淀粉溶液,	溶液先变蓝后褪色。	此过程中二氧化硫表现
	出(/)				


- A. 酸性

- B. 漂白性 C. 氧化性 D. 还原性
- 2、[杨浦]通入 SO_2 能引起下列溶液的颜色变化,其中 SO_2 的作用和 SO_2 使溴水褪色相同的 是()
 - A. 品红褪色

B. NaOH 酚酞溶液褪色

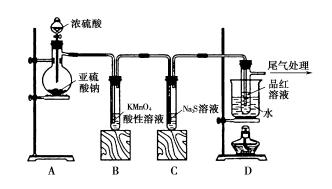
C. 石蕊试液变红

- D. 酸性 KMnO₄ 溶液褪色
- 3、[金山]单质能发生如下图转化关系的元素是()

- 4、[虹口]加热条件下,20 mL 18 mol/L 的浓 H_2SO_4 与过量的碳反应,可得到标况下的 CO_2
 - A. 小于 4.032L B. 等于 4.032L C. 大于 4.032L D. 无法确定

- 5、[虹口]向 H_2S 溶液中加入或通入少量下列物质,溶液 pH 上升且 $c(S^2)$ 降低的是()
 - A. NaOH
- B. CuSO₄
- $C. Cl_2$
- D. SO_2

- 6、[长宁]下列气体能用浓硫酸干燥的是()
 - A. SO_2
- B. NH₃
- C. HI
- $D. H_2S$
- 7、[青浦]常温下,将铁片投入浓 H_2SO_4 中,下列说法正确的是()
 - A. 不发生反应
- B. 铁被钝化 C. 产生大量 SO_2 D. 产生大量 H_2
- 8、[奉贤]有关浓硫酸的性质或作用,叙述错误的是()
 - A. 浓硫酸的脱水性是化学性质
 - B. 使铁、铝钝化表现了强氧化性
 - C. 制备乙酸乙酯的反应中起催化脱水作用
 - D. 与氯化钠固体共热制氯化氢气体时,表现强酸性
- 9、下列有关 SO₂ 的性质的探究实-验报告记录的实验现象正确的是()

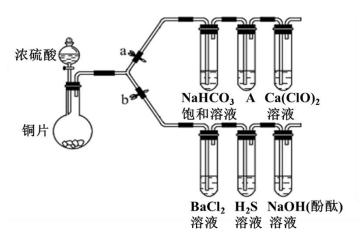

		分别加入SO ₂ 饱和溶液(至现象明显)			
实!	脸	野 耐 耐 耐 大 高 紅 溶 液 b		→ HNO₃和 BaCl₂的混 - - - - - - - - - - - - - - - - - - -	BaCl₂溶液
	A	无色	无色	无现象	无色溶液
记	В	红色	无色	白色沉淀	白色溶液
记录	С	无色	无色	白色沉淀	无色溶液
	D	红色	无色	白色沉淀	白色溶液

- 10. 下列叙述正确的是()
- A. 浓硫酸是一种干燥剂,能够干燥氢气、氧气、氨气等气体,但不能干燥有较强还原性的 HI、 H_2S 等气体
- B. 浓硫酸与单质硫反应的化学方程式为 2H₂SO₄(浓)+S → 3SO₂↑+2H₂O, 在此反应中,浓硫酸既表现了其强氧化性又表现了其酸性
- C. 把足量的铜粉投入到只含 H_2SO_4 2 mol 的浓硫酸中,得到的气体体积在标准状况下为 22.4 L
 - D. 常温下能够用铁、铝等容器盛放浓 H₂SO₄, 是因为浓 H₂SO₄的强氧化性使其钝化
- 11. 下列说法正确的是()
 - A. Na₂SO₃和 H₂O₂的反应为氧化还原反应
 - B. 二氧化硫可广泛用于食品的漂白
 - C. 检验某溶液是否含有 SO²一时,应取少量该溶液,依次加入 BaCl₂ 溶液和稀盐酸
 - D. Cl₂、SO₂均能使品红溶液褪色,说明二者均有氧化性

[拓展练习]

1、某化学兴趣小组为探究 SO2 的性质,按下图所示装置进行实验。请回答下列问题:

(1)装置 A 中盛放亚硫酸钠。的仪器名称是
,其中发生反应的化学方程式
为;
(2)实验过程中,装置 B、C 中发生的现象分
别是、
,
这些现象分别说明 SO ₂ 具有的性质是
和



(3)尾气可采用 溶液吸收。

2、宝山-(三)本题共15分

根据要求完成下列实验。(a、b 为弹簧夹, 其他装置略去)

(1)验证 SO_2 具有氧化性、还原性和酸性氧化物的通性。

30.	连接仪器、检查装置气密性、加药品后,打开 b (关闭 a),然后滴入浓硫酸,加热。
	装有浓硫酸的仪器名称是,铜与浓硫酸反应的化学方程式是。
31.	能验证 SO ₂ 具有氧化性的实验现象是
32.	装有 BaCl ₂ 溶液的试管中无任何现象,将其分成两份,分别滴加氨水和氯水,均产生白
	色沉淀,沉淀的化学式分别是,,。写出其中 SO
	显示还原性并生成白色沉淀的总的离子方程式。
33.	能验证 SO ₂ 具有酸性氧化物的通性的实验现象是
	若通入过量的 SO ₂ ,其化学方程式是
	(2)验证酸性的相对强弱:碳酸>次氯酸。(已知酸性:亚硫酸 >碳酸)
34.	打开 a 关闭 b。装置 A 中的足量的试剂是。利用该装置能否判断碳酸的酸性比次氯酸强,理由是。。
3 . :	金山-(四) (本题共 15 分)
	为探究工业制硫酸接触室中的反应,设计如图所示装置,并测定此条件下二氧化硫的转 -
化率	ML D. And
	O ₂ → 催化剂 SO ₂ →
	浓硫酸 冰水浴 氢氧化钠溶液 品红 ① ② ③ ④ ⑤
35.	①中浓硫酸的作用除了通过观察气泡,调节气体的流速外,还能、
	0
36.	③锥形瓶中盛放的是足量的氯化钡溶液,实验过程观察到锥形瓶中产生白色沉淀,反应
	的化学方程式为
	是。
37.	⑤中品红颜色没有发生改变,说明。
	若通入 SO_2 的体积为 VL (已折算为标准状况下的体积),要测定该条件下二氧化硫的
- ·	转化率,实验时还需要测定的数据是 mg ,则 m 可以是
2.0	此条件下二氧化硫的转化率是(列式表示)。
39.	反应结束后还需通入 N_2 的原因是。

第5讲 氮气和氮氧化物

[知识梳理]

一、氮气

在大气中氮的储量最为丰富,在地壳中氮也是常见元素之一。生物圈中氮的总量最少,但它对生命体却有着决定性的作用。无论是生命必需的蛋白质还是核酸,处处都离不开氮的存在。氮元素以化合态存在于很多无机物(如硝酸盐、铵盐、氮的氧化物)和有机物(如蛋白质、核酸等)中。

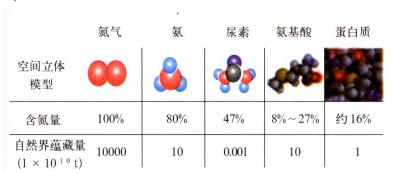


图 1 自然界中部分物质的含氮量

(一) 氮气的物理性质

氮气是一种无色、没有气味的气体,标准状况下的密度为 1.25g/L。氮气在水中的溶解度很小,通常情况下,1 体积水中只能溶解大约 0.02 体积的氮气。在压强为 101.3kP 下,氮气在-195.8°C时变成无色液体,在-209.9°C时变成雪花状固体。

- 2、____溶于水;
- 3、密度略小于空气;
- 4、沸点: -196℃, 液氮可以作。

(二) 氮气的化学性质

氮气是由氮原子组成的双原子分子。氮分子中,2 个氮原子共有 3 对电子,形成 3 个共价键: $\begin{tabular}{c} N \begin{tabular}{c} \bullet \begin{tabular}{c} \bullet \begin{tabular}{c} N \begin{tabular}{c} \bullet \$

1. 氮气跟氢气的反应(工业上利用这一原理合成氨)

2. 氮气跟氧气的反应

在放电条件下,氮气和氧气可以直接化合,生成无色、不溶于水的一氧化氮(NO)气体。

3. 氮气跟某些金属的反应

在高温时,氮气能跟钾、钠、镁、钙、锶、钡等金属化合。如镁在空气中燃烧时,除跟氧气化合生成氧化镁外,也能跟氮气化合生成微量的氮化镁。

[课堂思考] (1) 为什么在焊接金属时,氮气常作为保护气?

(2) 镁带在空气中的燃烧产物有哪些? 什么产物的量较多?

(三) 氮气的工业制法

空气中有大量的氮气,从空气中分离氮气,正是工业制取氮气的方法。

方法 1:

(四) 氮气的用途

在工业上,氮气是合成氨、制硝酸、氮肥、炸药等的重要原料。在通常情况下,氮气的化学性质不活泼,所以,它常被用作保护气。例如,焊接金属时用氮气保护金属使其不被氧化;在灯泡中填充氮气以防止钨丝被氧化或挥发,使灯泡经久耐用;粮食、罐头、水果等食品,也常用氮气作保护气,防止食品腐烂。在高科技领域中,常用液氮制造低温环境(沸点一195.8℃)可以深度冷冻物质。如有些超导材料就是在液氮处理后才获得超导性能的(如图 3)。医学上用液氮来保存待移植的活性器官,在冷冻麻醉条件下开刀等。

(五) 氮的固定:将空气中游离的氮转化为氮的化合物的方法称氮的固定,包括:

1,	大气固氮:	
2、	工业固氮:	

3、根瘤菌固氮

二、氮氧化物

1.氮的氧化物

 N_2O_5

2.NO 和 NO₂

(1) 物理性质

(1) 物理性原		
NO 是		
NO ₂ 是	_,易	0
(2) 化学性质		
NO 易与 O_2 化合,反应方程式为:	_	
实验室收集只能用法收集,而不能用法收集。		
NO ₂ 易与反应,反应方程式为:		
实验室收集只能用法收集,而不能用法收集。		

实验步骤	实验现象	实验结论
将充满 NO ₂ 的试管倒立于水槽	试管内的气体颜色由色	NO2溶于水并与 H ₂ O 发生反应
中,并不断振荡	慢慢变为色,最后剩余	
↑振荡	气体为原气体体积的;液	
的试管	体进入试管中,并	
通过导管通入少量的氧气	气体迅速由色变为	NO 不溶于水,易于氧气发生反应,
0_2 NO	色,液面,气体	
	最后又变为	
	重复出现第二步骤中的现象,最	4NO ₂ +O ₂ +2H ₂ O=4HNO ₃
重复上述操作几次	终,	

与氢氧化钠溶液:

 $2NO_2+2NaOH=NaNO_2+NaNO_3+H_2O$ $NO+NO_2+2NaOH=2NaNO_2+H_2O$

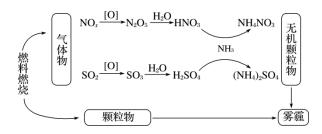
(3)影响

①NO:是传递神经信息的"信使分子",但容易与血红蛋白结合而使人体缺氧。

②NO2:能损坏多种织物和尼龙制品,对金属和非金属材料有腐蚀作用。

【基础练习】

1.NO 与 NO₂ 如何相互转化? (用化学方程式说明)

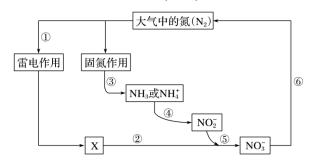

- 2.解释"雷雨发庄稼"原理,写出相关化学方程式。
- 3.分析汽车尾气中氮的氧化物产生的原理,写出相关方程式。

【提高练习】

- 1、下列叙述与氮的固定无关的是()
- A.工业上氮气与氢气化合成氨
- B.工业上将氨转化为硝酸和其他含氮化合物
- C.豆科植物的根瘤菌把空气中的氮气转化为含氮化合物
- D.电闪雷鸣的雨天,空气中的氮气会与氧气发生反应并最终转化为硝酸盐被植物吸收
- 2、氮气能大量存在于空气中的根本原因是()
- A. 氮气性质稳定,即使在高温下也不与其他物质发生反应
- B.氮气比空气轻且不溶于水
- C. 氮气分子中两个氮原子结合很牢固, 分子结构稳定
- D. 氮气既无氧化性, 也无还原性, 不与其他物质反应
- 3、以下非金属氧化物与其引起的环境问题及主要来源对应正确的是()

选项	氧化物	环境问题	主要来源
A	CO_2	酸雨	化石燃料的燃烧
В	SO_2	光化学烟雾	汽车尾气的排放
С	NO_2	温室效应	工厂废气的排放
D	СО	CO 中毒	燃料的不完全燃烧

- 4、.下列关于 NO 和 NO₂ 的说法中正确的是()
- A.NO₂是红棕色气体,易溶于水,属于酸性氧化物
- B.NO2可由 N2和 O2直接化合得到
- C.NO 和 NO₂ 均既可以用排空气法收集又可以用排水法收集
- D.NO 和 NO₂在一定条件下可以相互转化
- 5、研究表明, 氮氧化物和二氧化硫在形成雾霾时与大气中的氨有关(如下图所示)。下列叙述错误的是()



A.雾和霾的分散剂相同

B.雾霾中含有硝酸铵和硫酸铵

- C.NH₃ 是形成无机颗粒物的催化剂 D.雾霾的形成与过度施用氮肥有关
- 6、对 $3NO_2+H_2O=2HNO_3+NO$ 反应的下列说法正确的是(
- A.氧化剂与还原剂的质量比为 1:2
 - B.氧化产物与还原产物的物质的量之比为 1:2
- C.NO₂是氧化剂, H₂O 是还原剂
- D.在反应中若有 6molNO₂参与反应时,有 3mol 电子发生转移
- 7下列反应必须加入氧化剂且一步反应就能完成的是()
- $1N_2 \rightarrow NO_2$ $2NO_2 \rightarrow NO$ $3NO_2 \rightarrow HNO_3 4N_2 \rightarrow NO$ $5N_2 \rightarrow NH_3$
- A.(1)B.(2)(5)
- C.(4)
- D.(3)(4)

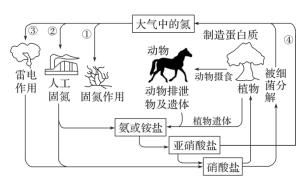
8 氮是动植物生长不可缺少的元素,含氮化合物也是重要的化工原料。自然界中存在如图所 示的氮元素的循环过程,下列说法不正确的是(

- A.过程①"雷电作用"中发生的反应是 N_2+O_2 <u>放电</u> 2NO
- B.过程③"固氮作用"中, 氮气被还原
- C.⑤中涉及的反应可能有 $2NO_2^- + O_2 = 2NO_3^-$
- D.⑥中涉及的反应可能有 $2NO_3^- + 12H^+ == N_2\uparrow + 6H_2O$
- 9、发射卫星的运载火箭,其推进剂引燃后发生剧烈反应,产生大量的高温气体从火箭尾部 喷出。引燃后产生的高温气体主要是 CO2、H2O、N2、NO, 这些气体均无色, 但在卫星发 射现场却看到火箭喷出大量红烟。产生红烟的原因是()
- A.高温下 N₂ 遇空气生成 NO₂
 - B.NO 遇空气生成 NO₂
- C.CO₂与 NO 反应生成 CO 与 NO₂ D.NO 和 H₂O 反应生成 H₂和 NO₂
- 10、科学的假设与猜想是科学探究的先导和价值所在。在下列假设或猜想引导下的探究肯定 没有意义的是()
- A.探究 SO₂ 和 Na₂O₂ 反应可能有 Na₂SO₄ 生成
- B.探究 NO 和 N₂O 可能化合生成 NO₂
- C.探究 NO2可能被 NaOH 溶液完全吸收生成 NaNO2和 NaNO3
- D.探究向滴有酚酞溶液的 NaOH 溶液中通入 Cl2, 酚酞红色褪去的原因是溶液的酸碱性改变 还是 HCIO 的漂白作用

【拓展】

11 同温同压下,在 3 支相同体积的试管中分别充有等体积混合的 2 种气体,它们是①NO 和 NO₂, ②NO₂和 O₂, ③NH₃和 N₂。将 3 支试管均倒置于盛水的水槽中, 充分反应后, 试管

中剩余气体的体积分别为 V_1 、 V_2 、 V_3 ,则下列的关系正确的是()

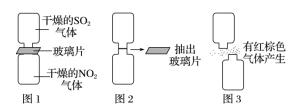

 $A.V_1 > V_2 > V_3$

 $B.V_1 > V_3 > V_2$

 $C.V_2 > V_3 > V_1$

 $D.V_3 > V_1 > V_2$

12、下图是有关氮的循环示意图。请回答:


- (1)请写出②中合成氨反应的化学方程式: _______
- (2)请写出③中固氮反应的化学方程式: _____。
- (3)过程④中的亚硝酸盐有毒,工业上若直接排放将造成对环境的污染。已知 $NaNO_2$ 遇到还原性较强的 NH_4^+ 会被还原为 N_2 ,在废液中加入下列物质不能使 $NaNO_2$ 无害化排放的是_____(填字母)。

 $a.H_2O_2$

b.NH₄Cl

c.KNO3

13、某化学学习小组为探究 NO₂和 SO₂的反应,特进行如下实验(如下图所示)。

- (1)图 1 两集气瓶中 (填"上"或"下")瓶颜色深。
- (2)图 2 中反应的现象是
- (3)图 3 中"有红棕色气体产生"说明 SO_2 和 NO_2 反应的产物中有_____,说明 NO_2 在该反应中显_____性。
- (4)由图 2 和图 3 中的现象写出 NO₂和 SO₂ 反应的化学方程式: _______

第6讲 氨气和铵盐

[知识梳理]

四、氨

氮气与氢气在一定条件下反应生成氨。在自然界中, 氨是动物体特别是蛋白质腐败后的 产物。氨是氮的气态氢化物。氨分子中氮以三个共价键分别与三个氢原子连结,为三角锥形 结构(如图5)。

氨分子的电子式 氨分子的结构式

图5 氨分子的结构

(一) 氨的物理性质

1色有	气味的气体

2.比空气 ;

3._______ 溶于水, **1 体积水约可溶解 700 体积的氨气**

4.沸点-33.5℃,易_____,液氨汽化需要吸收大量的热,所以可做_____。

氨很容易液化,在常压下冷却至-33.5℃或在常温下加压至 700kPa~800 kPa,气体 氨就液化成无色液体。液氨在汽化时吸收大量的热量,使周围的温度急剧 下降,所以液氨常用作**致冷剂**。

(二) 氨的化学性质

1. 氨跟水反应

[实验活动 1] 按图 6 安装好装置。在干燥的圆底烧瓶里充满干燥的氨气, 挤压滴管的胶头, 使少量水进入烧瓶。观察现象。

可以看到,烧杯里的水由玻璃管进入烧瓶,形成红色的喷泉。 从实验中可分析得出, 氨极易溶于水。

 $NH_3 + H_2O$ \longrightarrow _

图6氨的溶解性实验

[课堂思考] 氨水中存在哪些分子和离子?

	形成	物质分类	分子	离子
氨水				

NH₃·H₂O 不稳定,受热时易分解。 NH₃·H₂O _____NH₃↑+ H₂O

2. 氨跟酸反应

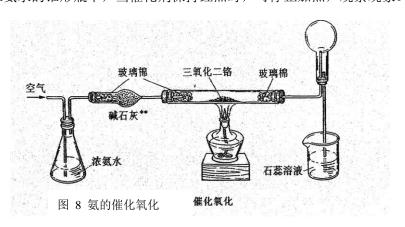
氨是碱性气体,它可与酸反应生成盐。

[**实验活动 2**] 取一根玻璃棒在浓氨水里蘸一下,另一根玻璃棒在浓盐酸里蘸一下,然后使两根玻璃棒相互接近(如图 7),但不能接触,观察现象,解释原因。

可以看到, 当两根玻璃棒接近时, 在玻璃棒周围有大

图 7 氨跟氯化氢的反应

量白烟产生,这白烟是由氨水里挥发出的氨跟浓盐酸挥发出的氯化氢化合生成微小的氯化铵晶体。 $NH_3+HCl \rightarrow$


氨同样能跟其他酸反应,生成铵盐:

 $2 \text{ NH}_3 + \text{H}_2 \text{SO}_4 \rightarrow \underline{\hspace{2cm}}$ $\text{NH}_3 + \text{HNO}_3 \rightarrow \underline{\hspace{2cm}}$

3. 氨跟氧气反应

在通常情况下,氨在氧气中不反应,但在催化剂存在的条件下,能与氧气反应生成 NO 和 H_2O ,并放出热量。

[**实验活动 3**] 先用酒精灯对装在玻管里的三氧化二铬催化剂进行加热,然后,缓慢地把空气压入盛有浓氨水的锥形瓶中,当催化剂保持红热时,可停止加热,观察现象。

可以看到圆底烧瓶内出现红棕色气体,这是由于生成的一氧化氮容易被空气中的氧气氧化生成二氧化氮的缘故,二氧化氮与水反应生成硝酸(同时还有一氧化氮),因此,紫色石蕊溶液变红。化学反应方程式为:

这一反应叫做氨的催化氧化(或接触氧化),它是工业上制硝酸的基础。

氨分子中氮呈-3 价,是氮元素的最低价态,在一定条件下能够被氧化,使氮的价态升高。 氨气除了可被氧气氧化,也能被氯气、溴蒸气所氧化。

$3Cl_2+8NH_3 \rightarrow 6NH_4Cl+N_2\uparrow$

利用此反应中伴有发烟现象,可用于寻找运输氯气管道的漏气处。

- (三) 氨的用途: 制氮肥、化工原料、制冷剂
- 五、铵盐: 铵盐一般为白色晶体,易溶于水。
- 1. 铵盐的热分解

[实验活动 4] 加热封闭玻璃管内的少量氯化铵固体

加热后不久,在玻璃管上端管壁上有白色固体附着。 这是由于氯化铵分解生成氨和氯化氢,氨和氯化氢在玻璃 管上部冷却时,它们又重新结合生成白色的氯化铵晶体。

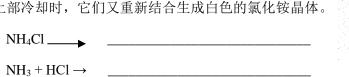
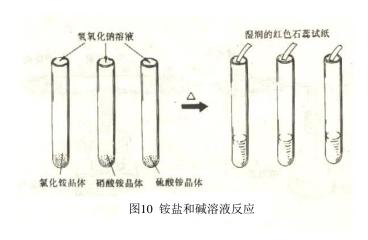


图 9 铵盐的受热分解

[课堂思考] 碘受热变成蒸气,蒸气遇冷又变成晶体碘。这与氯化铵受热分解的现象相似,它们变化的本质是否相同?为什么?

碳酸氢铵受热时也会分解,生成氨、水和二氧化碳。


 NH_4HCO_3 $NH_3\uparrow + H_2O + CO_2\uparrow$

碳酸氢铵也称碳铵,是一种氮肥。由于它受热易分解而降低肥效,所以保存时要密封包装,并放在阴凉通风处;施用时要深施盖土。

硝酸铵组成中的 NO_3 ⁻有较强氧化性,在加热时或受到猛烈撞击时会发生爆炸性分解。 因此硝酸铵可用作炸药。 $2NH_4NO_3$ \longrightarrow $2N_2\uparrow + 4H_2O + O_2\uparrow$

2. 铵盐跟碱的反应

[实验活动 5] 取氯化铵、硝酸铵和硫酸铵晶体各 1g,分别放在三支试管中,分别加入 NaOH 溶液。加热试管,并将湿润的红色石蕊试纸靠近管口上方,观察试纸颜色的变化。 加热后试管中都有气体产生,并闻到**有刺激性气味**。同时还看到**湿润的红色石蕊试纸变蓝**。

[课堂练习] 请写出上述各反应的化学方程式和离子方程式。

分析上述反应可知, 铵盐跟强碱反应的本质是:

$$NH_4^+ + OH^- \longrightarrow NH_3\uparrow + H_2O$$

事实证明,铵盐与碱共热都能产生 NH_3 。这是铵盐的共同性质。实验室利用铵盐与碱反应的性质在实验室制取氨气,同时也利用这个性质检验 NH_4 中的存在。

[课堂思考] (1) 在农村,为了识别化肥中的铵态氮肥(铵盐),常用白色化肥和熟石灰混合,闻一下气味,有刺激性气味的,可推知是铵态氮肥。这种简便的测试方法,是应用了铵盐的什么性质?

(2) 为什么金属焊接时可以用氯化铵作焊药?

(提示: 其中的化学方程式为: 4CuO+2NH₄Cl→3Cu+CuCl₂+ N₂↑+4H₂O)

3. 氨的实验室制法

实验室利用固体的氯化铵与氢氧化钙加热反应制取氨气,与制氧气的发生装置相同。

$$2NH_4Cl + Ca(OH)_2 \longrightarrow CaCl_2 + 2NH_3\uparrow + 2H_2O$$

[课堂思考] (1) 制取氨的反应原理是什么?

- (2) 如何检验氨是否收集满? 能否用排水法收集氨气?
- (3)能否用浓硫酸干燥氨气?若不能,应选用什么干燥剂进行干燥?

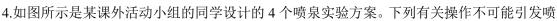
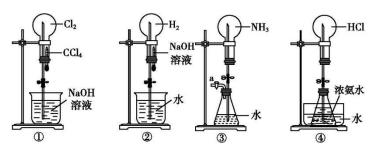
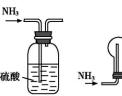


图12 氨的实验室制法

[练习]


- 1.下列关于氨的说法正确的是()
- A.可用作制冷剂 B.难溶于水 C.可用向上排空气法收集 D.属于电解质
- 2.下列检验铵盐的方法中,正确的是()
- A.加水溶解,再用红色石蕊试纸检验其溶液

- B.加热试管,并用湿润的红色石蕊试纸接近试管口上方
- C.加入氢氧化钠溶液,加热试管,并用湿润的红色石蕊试纸接近试管口上方
- D.加入氢氧化钠溶液,加热试管,再滴入酚酞试液
- 3.下列装置能达到实验目的的是(
- A.用装置甲制备氨气
- B.用装置乙除去氨气中少量水
- C.用装置丙收集氨气
- D.用装置丁吸收多余的氨气


NH₄Cl和

泉现象的是()

- A.挤压装置①的胶头滴管使 CCl₄ 全部进入烧瓶,片刻后打开止水夹
- B.挤压装置②的胶头滴管使 NaOH 溶液全部进入烧瓶,片刻后打开止水夹
- C.用鼓气装置从装置③的 a 处不断鼓入空气并打开止水夹
- D.向装置④的水槽中慢慢加入足量浓硫酸并打开止水夹
- 5.下列离子方程式正确的是()
- A.实验室制 NH₃:NH₄ +OH-—NH₃↑+H₂O
- B.NaOH 与 NH₄Cl 溶液混合加热:NH⁴ +OH-△NH₃·H₂O
- C. 氨水中加盐酸:NH₃·H₂O+H+——NH₄+H₂O
- D.氨气通入稀 H₂SO₄ 中:NH₃+2H⁺——NH₄⁺
- 6.下列说法中正确的是()
- A.用氨气做喷泉实验,都会形成红色喷泉
- B.所有铵盐都易溶于水,不是所有铵盐中的氮均呈-3 价
- C. 氯化铝溶液中滴入过量的氨水: $Al^{3+}+4OH$ —— AlO_2+2H_2O

D.NH₄Cl 和 NaCl 的固体混合物可用升华法分离

7.实验室为了更简便地制取 NH₃,下列方法中适合的是()

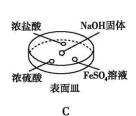
A.NH₄Cl 与浓 H₂SO₄ 混合共热

B.N₂+3H₂ 催化剂 2NH₃

C.加热浓氨水

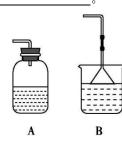
D.加热 NH4HCO3,生成的气体用 P2O5 干燥

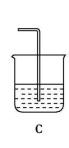
8.某学生用滤纸折成一只纸蝴蝶并在纸蝴蝶上喷洒某种试剂,挂在铁架台上。另取一个盛有某种溶液的烧杯,放在纸蝴蝶的下方(如图)。过一会儿,发现纸蝴蝶的颜色由白色转变为红色,喷洒在纸蝴蝶上的试剂与小烧杯中的溶液是()

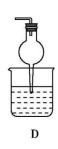

	A	В	С	D
纸蝴蝶上的喷洒液	石蕊	酚酞	酚酞	石蕊
小烧杯中的溶液	浓盐酸	浓氨水	NaOH 溶液	浓硫酸

- 9、现欲分离氯化纳和氯化铵的混合物,可采用的方法是()
- A. 加入氢氧化钠溶液 B. 加入硝酸银溶液 C. 加热和冷却 D. 加入水
- 10、氨气在工农业生产中有重要应用。
- (1)写出工业合成氨的化学方程式:
- (2)某化学实验小组同学利用以下装置制备氨气,并探究氨气的性质。
- ①实验室制备氨气的化学方程式为_____

②用装置 B 收集氨气时,氨气的进气口是



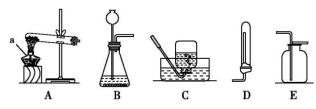

(填"a"或"b")。打开装置 B 中的活塞 c,若观察到烧瓶内产生了红色喷泉,则原因 是


③向 C 中 NaOH 固体上滴几滴浓氨水,迅速盖上盖,观察现象。浓盐酸液滴附近会出现白烟,发生反应的化学方程式为____。FeSO4液滴中先出现灰绿色沉淀,过一段时间后

变成红褐色,发生的反应包括 Fe²⁺+2NH₃·H₂O——Fe(OH)₂↓+2NH₄⁺和_

④为防止环境污染,以下装置(盛放的液体均为水)可用于吸收多余氨气的是_____(填字母)。

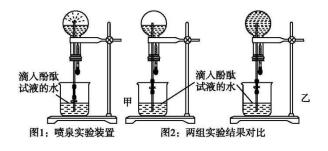
[拓展练习]


11.硫酸铵为白色晶体,无气味,溶于水,不溶于乙醇和丙酮。硫酸铵在一定温度下分解的化学方程式为 $3(NH_4)_2SO_4$ — $3SO_2\uparrow+N_2\uparrow+4NH_3\uparrow+6H_2O$ 。下列说法不正确的是()

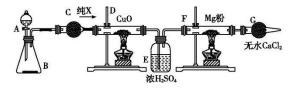
A.将分解产生的混合气体.用水充分吸收,生成物中 $n[(NH_4)_2SO_3]$: $n(NH_4HSO_3)=1:2$

- B.将分解产生的混合气体,通入到 BaClo 溶液中能产生白色沉淀
- C.将分解产生的混合气体,用足量的浓硫酸充分吸收后,可以收集到纯净的 N2
- D.将分解产生的混合气体,通入到酸性 K₂Cr₂O₇ 溶液中,涉及氧化还原反应的离子方程式为

$$Cr_2O_7^{2-}+3SO_2+2H^+-2Cr^{3+}+3SO_4^{2-}+H_2O$$


- 12.实验室有如图所示的实验装置:
- (1)已知氨气(NH₃)是一种无色、有刺激性气味的气体,密度比空气小,极易溶于

②试写出实验室制取氨气的化学方程式: 。


③如何检验收集的气体是氨气?试写出方法和结论:

(2)甲、乙两组同学用干燥的圆底烧瓶各收集一瓶氨气,根据图 1 喷泉实验的装置进行实验,都观察到美丽的红色喷泉。

根据实验现象说明氨气具有的性质是

13.实验室欲用下列装置和药品来制备少量的氮化镁

如图的实验装置中,A 中盛放的是浓氨水,B 中盛放的是生石灰,C 中盛放的是干燥剂。

(1)在装置 B 中放置的固体是	_,其用途为	o
(2)写出 F 装置中发生反应的化学方程式:		_
(3)装置 E 和 G 的作用分别是		0

第7讲 硫和氮的综合复习

[知识梳理]

铵盐的性质

虹口-8. 关于 NH ₄ Cl	的说法正确的是
-----------------------------	---------

A. 溶于水温度升高

B. 可作氮肥

C. 受热分解可制氨气

D. 属于共价化合物

闵行-7. 关于氯化铵的叙述中,错误的是

A. 能与碱反应

B. 是离子化合物

C. 固体受热分解可制氨气

D. 固体溶于水吸热

宝山-3. 下列关于 NH₄Cl 的描述错误的是

A. 含有极性共价键

B. 属于铵态氮肥

C. 加热分解产物是 N₂ 和 HCl D. 溶于水吸热

青徐汇-4. 下列关于 NH₄Cl 的描述正确的是

A. 只存在离子键

B. 属于共价化合物

● 化肥

浦东-3. 铵态氮肥不能与草木灰(有效成分 K_2CO_3)混用的原因是铵态氮肥

A. 呈酸性 B. 受热易分解 C. 易溶于水 D. 遇碱放出氨气

松江-2. 属于硝态氮肥的是

A. CO(NH₂)₂ B. NH₄Cl C. KNO₃ D. NH₃·H₂O

● 其他考点

浦-10. 某工厂运输 NH3 的管道出现小孔导致 NH3 泄漏,技术人员常常用一种挥发性液体进 行检查, 该液体最有可能是

A. 浓盐酸 B. 烧碱 C. 浓硫酸 D. 碳酸钠

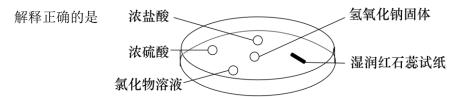
黄浦-13. 前者是物理变化,后者是化学变化,且都有明显颜色变化的是

A. 打开盛装 NO 的集气瓶;冷却 NO2气体

B. 石油分馏: 丁烷裂解

C. 木炭吸附 NO_2 气体;将氯气通入品红溶液中

D. 向品红溶液中通入 SO₂; 向 FeCl₃ 溶液中滴入 KSCN 溶液

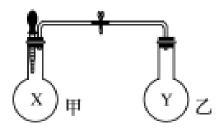

杨浦-16. 汽车尾气中的氮氧化合物(NOx)与大气中的 NH_3 发生如下作用,形成一种雾霾。

有关该雾霾的叙述错误的是 NOx
$$\frac{[O]}{\overline{\text{反}}\overline{\text{D}}}$$
 N₂O₅ $\frac{\text{H}_2\text{O}}{\overline{\text{D}}\overline{\text{D}}}$ HNO₃ $\frac{\text{NH}_3}{\overline{\text{D}}\overline{\text{D}}}$ 烟 (一种雾霾)

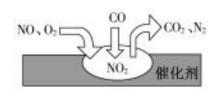
A. 该雾霾中含硝酸铵固体

- B. 反应②是非氧化还原反应
- C. NH3是形成该雾霾的催化剂
- D. NH3可能来自过度施用氮肥

金山-17. 向 NaOH 固体上滴几滴浓氨水,立即用另一表面皿扣在上面。下表中对实验现象



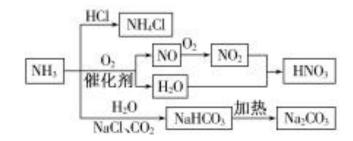
选项	实验现象	解释
A	浓盐酸附近产生白烟	NH3与 HCl 反应产生了 NH4Cl 固体
В	浓硫酸附近无明显现象	NH ₃ 与浓硫酸不发生反应
С	氯化物溶液变浑浊	该溶液一定是 AlCl ₃ 溶液
D	湿润红色石蕊试纸变蓝	氨气是一种碱


[练习]

- 1. 下列有关氮元素的单质及其化合物的说法正确的是()
- A. 豆科植物通过根瘤菌吸收空气中的氮气,属于物理变化
- B. 向装有 $Fe(NO_3)_2$ 溶液的试管中加入稀硫酸,在管口观察到红棕色气体,原因是 HNO_3 分解生成了 NO_2
 - C. 将蘸有浓氨水和浓硫酸的玻璃棒靠近, 观察到白烟
 - D. 雷雨天气可以产生硝酸, 不会给作物带来危害
 - 2. 下列化学事实及其解释都正确的是()
 - A. NO₂与水反应, NO₂作还原剂, 水作氧化剂
 - B. 某溶液中含有大量的 NO_3^- ,该溶液中一定不存在大量的 Fe^{2^+}
 - C. 闪电时, 空气中的 N₂和 O₂可直接化合生成 NO₂
 - D. 除去 NO 中混有少量 NO2 气体时,可以用水洗涤后再干燥

3. 某同学仿照"喷泉"实验的原理,在实验室做了一个"喷烟"实验,如图所示。他在甲、乙两个烧瓶中分别充入 X、Y 两种无色气体,在胶头滴管中盛有含酚酞的 NaOH 溶液,实验时将胶头滴管内的液体挤入甲烧瓶内,然后打开止水夹,便可以看到甲烧瓶中的导管口喷出白色的烟,同时甲烧瓶中的溶液颜色逐渐变浅。若已知 X、Y 是 HCl、NH₃、Cl₂、O₂、CH₄、SO₂、NO 气体中的两种,则下列判断中正确的是()

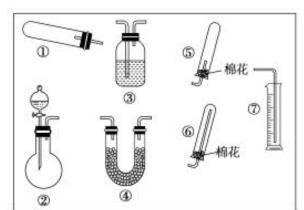
- A. X 是 NH₃, Y 是 HCl
- B. X 是 Cl₂, Y 是 NH₃
- C. X 是 SO₂, Y 是 O₂
- D. X是NO,Y是O₂
- 4. (2019 年松江模拟)某同学探究氨和铵盐的性质,对相关实验操作及现象描述正确的是()
 - A. 室温下测定等浓度氨水和 NaOH 溶液的 pH, 比较氨水和 NaOH 碱性强弱
 - B. 将氨水缓慢滴入 AlCl₃ 溶液中,研究 Al(OH)₃ 的两性
 - C. 将蘸有浓氨水和浓硫酸的玻璃棒靠近, 观察到白烟
 - D. 加热除去 NH₄Cl 中的少量 NaHCO₃
- 5. 随着我国汽车年销量的大幅增加,空气环境受到了很大的污染。汽车尾气装置里, 气体在催化剂表面吸附与解吸作用的过程如图所示,下列说法正确的是()



- A. 反应中 NO 为氧化剂, N_2 为氧化产物
- B. 汽车尾气的主要污染成分包括 CO、NO 和 N₂
- C. NO 和 O2 必须在催化剂表面才能反应
- D. 催化转化总化学方程式为 2NO+O₂+4CO 4CO₂+N₂
- 6. 将红热的木炭与浓硝酸共热产生的气体等分为①和②两份,第①份先通过适量蒸馏

- 水,再通过少量澄清石灰水;第②份直接通过少量澄清石灰水。则石灰水的变化最可能为()
 - A. ①不变浑浊, ②变浑浊
- B. ①变浑浊, ②不变浑浊
- C. ①变浑浊, ②变浑浊
- D. ①不变浑浊, ②不变浑浊
- 7. (2019 年晋中模拟)SCR 法(选择性催化还原技术)是一种以 NH_3 作为还原剂,将烟气中 NO_x 分解成无害的 N_2 和 H_2O 的干法脱硝技术,反应原理为
 - $(1)6NO + 4NH_3 = 5N_2 + 6H_2O;$ $(2)6NO_2 + 8NH_3 = 7N_2 + 12H_2O;$
 - ③ $NO+NO_2+2NH_3=2N_2+3H_2O$,下列说法正确的是()
 - A. NO₂为酸性氧化物
 - B. 氮气性质不活泼, 其原因是氮元素的非金属性很强
 - C. 反应③中标准状况下每生成 22.4 L N_2 , 转移电子数 $1.5N_A$
 - D. HNO₃→NO→NO₂, 以上各步变化均能通过一步完成
- 8. 在装置中, 烧瓶中充满干燥气体 a, 将滴管中的液体 b 挤入烧瓶内, 轻轻振荡烧瓶, 然后打开弹簧夹 f, 烧杯中的液体 d 呈喷泉状喷出, 最终几乎充满烧瓶。则 a 和 b 分别是()

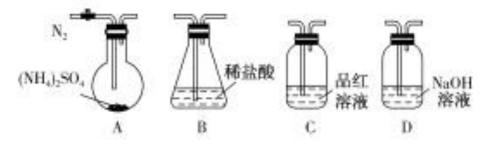
选项	a(干燥气体)	b(液体)	
A	NO	水	
В	CO_2	饱和 NaHCO₃溶液	fb
С	Cl ₂	饱和 NaCl 溶液	
D	NH_3	1 mol⋅L ⁻¹ 盐酸	


9. NH₃是一种重要的化工原料,可以制备一系列物质(如图)。下列有关表述正确的是()

- A. NH₄Cl 和 NaHCO₃都是常用的化肥
- B. NO₂与水反应时,氧化剂与还原剂的物质的量之比为1:1
- C. NH₃和 NO₂在一定条件下可发生氧化还原反应
- D. 利用上述关系制取 NaHCO₃的操作为向饱和 NaCl 溶液中依次通入过量的 CO₂、NH₃,

然后过滤得到 NaHCO3

- 10. 废水脱氮工艺中有一种方法是在废水中加入过量 NaClO 使 NH_4 完全转化为 N_2 , 该反 应可表示为 $2NH_4^+ + 3CIO^- = N_2 \uparrow + 3CI^- + 2H^+ + 3H_2O$ 。下列说法中,不正确的是()
 - A. 反应中氮元素被氧化,氯元素被还原 B. 还原性: $NH_4^+>Cl^-$
 - C. 反应中每生成 $1 \text{ mol } N_2$, 转移 6 mol 电子 D. 经此法处理过的废水可以直接排放
- 11. 某同学用下列装置(固定、加热仪器和橡胶管略)进行有关氨气制取和铵盐的实验探究。
- (1)若用装置①制取 NH3, 其反应的化学 方程式为 若要测定生成的 NH3 的体积,则必须选择的 装置是 (填装置序号),装置中所盛试 剂应具有的性质是
- (2)若用装置②制取并收集干燥的 NH3, 烧瓶内装的试剂是 , 分液漏斗中装

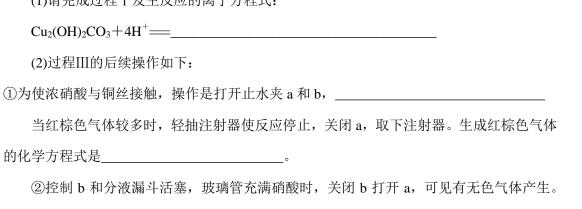


的试剂是_____, 收集装置应选择_____(填装置序号)。

- (3)题中若用到装置⑤或⑥、棉花往往用水或酸液浸湿、其作用是
- (4)(NH₄)₂SO₄是常用的化肥和化工原料,受热易分解。某兴趣小组拟探究其分解产物。

【查阅资料】(NH₄)₂SO₄在 260℃和 400℃时分解产物不同。

【实验探究】该小组拟选用下图所示装置进行实验(夹持和加热装置略)。



实验:连接装置A-D-B,检查气密性,按图示重新加入试剂。通入 N_2 排尽空气后, 于 400℃加热装置 A 至(NH4)₂SO₄ 完全分解无残留物,停止加热、冷却,停止通入 N₂。观察 到装置 A、D 之间的导气管内有少量白色固体。经检验,该白色固体和装置 D 内溶液中有 SO_3^{2-} ,无 SO_4^{2-} 。进一步研究发现,气体产物中无氮氧化物。

- ①检验装置 D 内溶液中有 SO_3^{2-} ,无 SO_4^{2-} 的实验操作和现象是
- ②装置 B 内溶液吸收的气体是
- ③(NH₄)₂SO₄在 400℃分解的化学方程式是

- 12. 氮的氧化物对人体危害极大,实验时应防止其对空气的污
- 染。某同学利用下列装置实现铜与浓硝酸、稀硝酸的反应。
- I.取一段铜丝,用稀硫酸除去铜锈[主要成分是 Cu₂(OH)₂CO₃]。
- II.将洗涤后的铜丝做成匝数较多的螺旋状。
- III.按如图所示装置连接仪器、检查气密性、装入化学试剂。
 - (1)请完成过程 I 发生反应的离子方程式:

稀硝酸充满玻璃管的目的是____。

NaOH

第9讲 化学反应速率

[学习目标]

- 1、化学反应速率的概念,体会研究反应速率的意义;
- 2、初步学会有关化学反应速率的简单计算;
- 3、解释用不同物质浓度变化表示同一化学反应速率的意义及其关系。

[知识梳理]

	AC 411	بد ج	· ++ ++
一 、	化学	Δm	7. 安全

[744 6 / [764-77]			
一、化学反应速率			
1、对化学反应速率的认识			
[回忆课堂实验] 钠、镁分别与对	水的反应		
实验现象:			
化学反应方程式:			
得到结论:			
(1) 概念: 化学反应速率是指: _			
计算表达式:	单	位:	
[思考与练习]: 一定条件下 N ₂ H ₂	反应来合成 NH _{3,}	经测定各物质的	浓度如下表:
参加反应的物质	N ₂	H_2	NH ₃
起始的浓度 mol/L	1.00	1.00	0.00
浓度的变化 moL/L			
5min 后的浓度 mol/L	0.95	0.85	0.10
计算 v(N ₂)、v(H ₂)、			
v(NH ₃)[mol/(L•min)]			
结论:1)一个反应的反应速率可以	目多种物质表示,	数值可能不同,	但表示这个化
快慢			
2)用各物质表示的化学反应设	逐之比	化学反应中	十量数之比 。如
体的反应: aA+bB ─ cC+dD 中,	ν(A):: ν(C):= : b	o:: d
典型例题:			
例 1 . 某合成氨反应不同时间测得的	4.反应读率记录加	□下. 凍窓最快的	力是
		, , , , , , , , , , , , , , , , ,	
$ 1v(N_2)=0.1 \text{ mol/}(L\bullet min) $		$v(H_2)=0.02 \text{ mol/(}$,
$3v(NH_3)=0.4 \text{ mol/}(L \cdot min)$	4)	$v(NH_3)=0.01 \text{ mol}$	′(L•s)
[练 1]: 反应 A(g)+3B(g) —— 2Co	(g)+2D(g),测得反	应速率, 反应速	率最快的是
A. v(D)=0.4mol/(L•min)	В.	v(C)=0.5mol/(L•r	nin)

D. $v(A)=0.005 \text{ mol/}(L \cdot s)$

C. $v(B)=0.01 \text{ mol/}(L \cdot s)$

例 2、反应 $4NH_3$ (气)+ $5O_2$ (气) = $4NO(气)+<math>6H_2O(气)$ 在 2 升的密闭容器中进行,1 分钟后, NH₃减少了 0.12 摩尔,则平均**每秒**钟浓度变化正确的是

A、NO: 0.001 摩/升

B、H₂O: 0.002 摩/升

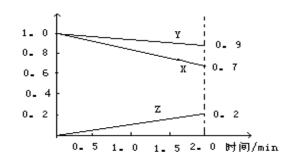
C、NH₃: 0.002 摩/升

D、O₂: 0.00125 摩/升

[**练习 2**]: 在 2 升的密闭容器中,发生以下反应: 2A(g)+B(g) → 2C(g)+D(g)

若最初加入的 A 和 B 都是 4 摩,在前 10 秒钟 A 的平均反应速率为 0.12 mol/(L•s),则 10 秒 钟时,容器中B的物质的量是

A.3.6 摩


B. 2.8 摩 C. 2.4 摩

D. 1.2 摩

[练习 3]: 在 N₂+3H₂ 2NH₃ 的反应中,经过一段时间后,NH₃ 的浓度增加了 0.6mol/L, 在此时间内用 H₂表示的平均反应速率为 0.45 mol/(L•s),则此一段时间值是

A. 1s B. 2s C. 0.44s D. 1.33s

例 3: 某温度时, 在 2L 容器中 X、Y、Z 三种 物质的物质的量随时间的变化, 曲线如右图所 示,由图中数据分析,反应物是____,该反 应开始至 2min, Z 的平均反应速率为 ___。该反应的化学方程式为__ ; 若某合成氨反应在不同时间

测得的反应速率记录如下:

- $(1)v(N_2)=0.1 \text{ mol/}(L\bullet min)$
- $2v(H_2)=0.2 \text{ mol/}(L \cdot \text{min})$
- $3v(NH_3)=0.4 \text{ mol/}(L\bullet min)$ $4v(NH_3)=0.01 \text{ mol/}(L\bullet s)$

其中化学反应速率最快的是

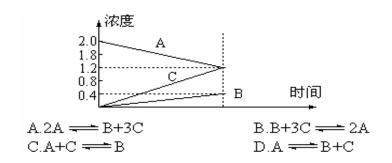
例 4: 将等物质的量的 A、B 混合于 2L 的密闭容器中,发生反应: 3A(g)+B(g) === nC(g)+2D(g), 经 5s 后, 测得 D 的浓度为 0.5mol/L,C_(A):C_(B)=3:5,V(C)为 0.1mol/(L.s),求

- (1) 此时 A 的浓度及开始前放入容器中的 A、B 的物质的量
- (2) 以 B 表示的该反应的平均反应速率
- (3) n 为多少?

二、影响化学反应速率的因素
(一) 内因:。
【练习】下列金属粉末与等体积等浓度盐酸反应,反应速率最快的是
A 铜 B 铁 C 铝 D 镁
(二)外因:。
1. 固体表面积:
【结论】当其条件不变时,增大固体反应物的表面积,可以。
[练习 4]:将 10 g 块状碳酸钙跟足量盐酸反应,反应物损失的质量随时间的变化曲线如下图
的实线所示,在相同的条件下,将 10 g 粉末状碳酸钙与同浓度足量盐酸反应,则相应的曲
线(图中虚线所示)正确的是
损失质量 A 时间 B 时间 C 时间 D 时间
2. 浓度:
反应方程式: Na ₂ S ₂ O ₃ + H ₂ SO ₄
【结论】当其条件不变时,增大反应物浓度,可以
例 1 :比较下列几种情况下,开始时反应速率大小关系(溶液混合时忽略体积变化)
A.10ml 2mol/L Na ₂ S ₂ O ₃ + 10ml 1 mol/LHCl
B.10ml 4mol/l $Na_2S_2O_3 + 30ml + 1mol/LHCl$
C.10ml 1mol/L $Na_2S_2O_3 + 30ml = 0.5mol/LHCl$
D.10ml 1mol/L Na ₂ S ₂ O ₃ + 30ml 0.05mol/LHC
3. 压强:
【结论】当温度不变,对有气体参加的反应,增大压强,可以。
例 5 : 对于 I ₂ (g)+H ₂ (g) —— 2HI(g)反应中,改变下列条件时,压强如何变化?反应
速率如何变化?
A. 缩小容器体积,压强,反应速率
B. 增大气体体积,压强,反应速率

【结论】当其它条件不变,升高温度一般可以_____。

4. 温度:

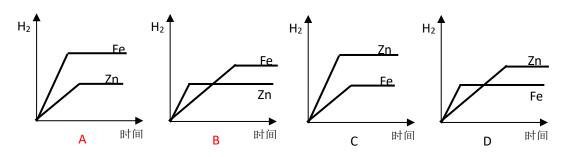

当其它条件不变,升高温度时,若反应是放热反应,则反应速率, ,若反应是吸热 反应,则反应速率。 5. 催化剂: 【结论】当其它条件不变时,加入催化剂一般可以 6.其它因素:除上述因素外,反应物间的接触面积、光、超声波、激光、放射线、电磁波、 扩散速率和溶剂等因素也会影响反应速率。 例 6: 把下列四种 Na₂S₂O₃溶液,分别加进四个盛有 10mL 浓度为 2 mol·L¹ 的盐酸的烧杯 中, 并都加水稀释至 50mL, 此时, Na₂S₂O₃ 和盐酸缓慢地进行反应, 其中反应速率最大的 是 A、10 mL2 mol·L⁻¹ B、20 mL2 mol·L⁻¹ C、10 mL4 mol·L⁻¹ D、20 mL3 mol·L⁻¹ 例 7: 将除去除氧化膜的镁条投入盛有稀盐酸的试管中,发现氢气的 V.(H2) 生成速率随时间变化如图所示: t_1 — t_2 速率变化的因素是____、__、,主要因素是 t₂—t₃速率变化的因素是____、___,主要因素是__ [练习] 1.下列说法正确的是 A.化学反应速率是指一定时间内反应物物质的量的减少或生成物物质的量的增加 B.化学反应速率是为 $0.8 \text{ mol} \cdot \text{L}^{-1} \cdot \text{S}^{-1}$ 指 1 秒钟时某物质的浓度为 $0.8 \text{ mol} \cdot \text{L}^{-1}$ C.根据化学反应速率的大小可以 知道化学反应进行的快慢 D.对于任何化学反应来说.反应速率越快.反应现象就越明显 2、已知 4NH₃+5O₂→4NO + 6H₂O,若反应速率分别为 υ(NH₃)、υ(O₂)、υ(NO)、υ(H₂O)表示, 则正确的关系是 A. $4/5v(NH_3) = v(O_2)$ B. $5/6v(O_2) = v(H_2O)$ C. $2/3v(NH_3) = v(H_2O)$ D. $4/5\nu(O_2) = \nu(NO)$ 3、已知有反应 $4A(g)+3B(g) \rightarrow 2C(g)+D(g)$ 在四种不同情况下的反应速率为,反应最快的是 (1)υ(A)=0.15mol·L⁻¹·S⁻¹ $2v(B) = 0.6 \text{mol} \cdot L^{-1} \cdot S^{-1}$ $\Im v(C) = 0.4 \text{mol} \cdot L^{-1} \cdot S^{-1}$ $\Im v(D) = 0.27 \text{mol} \cdot L^{-1} \cdot \text{min}^{-1}$ 4、若某合成氨反应在不同时间测得的反应速率记录如下: ① $v(N_2)=0.1 \text{ mol/}(L \cdot min)$ ② $v(H_2)=0.2 \text{ mol/}(L \cdot min)$ $(3)v(NH_3)=0.4 \text{ mol/}(L\bullet min)$ $(4)v(NH_3)=0.01 \text{ mol/}(L\bullet s)$

5、反应 $2SO_2+O_2$ \implies $2SO_3$ 经一段时间后, SO_3 的浓度增加了 0.4mol·L-^1 ,在这段时间内用 O_2 表示的反应速率为 $0.04 \text{mol·L-}^1 \cdot \text{s-}^1$,则这段时间为

- A. 0.1s
- B. 2.5s
- **C.** 5s
- D. 10s

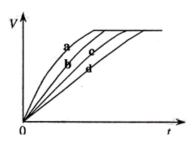
- A. bc/n
- B. ac/m
- C.nc/b
- D.mc/a

7、下图的曲线是 800°C时,A、B、C 三种气体物质的浓度随时间变化的情况,T 时间时,能以此曲线表示的反应是


- 8、可逆反应 mA(g)+nB(g) **一** pC(g),反应开始 10s 后,A 减少 1mol,B 减少 1.25mol,C 增加 0.5mol,则 m:n:p 为
- A.1:3:2
- B.3:1:2
- C.4:5:2
- D.无法确定
- 9、把 0.6molX 气体和 0.4molY 气体混合于容积为 2L 的容器中使其发生如下反应:3X(g)+Y(g)
- \longrightarrow nZ(g)+2W(g),5min 末生成 0.2mol W。
- (1) 若测知以 Z 浓度变化表示的平均反应速率为 0.01mol/(L•min),则 n 的值为:
- A.4
- B. 3
- C. 2
- D.1
- (2) 上述反应在 5min 末时,已反应的 Y 占原来 Y 的物质的量分数为
- A 20%
- B 25%
- C 33%
- D 50%

第10讲 化学平衡

[知识梳理]


课前回顾

1、颗粒大小不同的等质量的铁和锌与足量的同浓度的稀硫酸反应,下列图像可能正确的是

2、等质量的铁与过量的盐酸在不同的试验条件下进行反应,测定在不同时间 t 产生氢气体 积 v 的数据,根据数据绘制得到图 1,则曲线 a、b、c、d 所对应的试验组别可能是

组别	c(HCl)(mol/L)	温度(℃)	状态
1	2.0	25	块状
2	2.5	30	块状
3	2.5	50	块状
4	2.5	30	粉末状

- A. 4-3-2-1 B. 1-2-3-4 C. 3-4-2-1

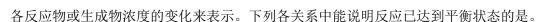
- D. 1-2-4-3

化学平衡

1.可逆反应

可逆反应是指_

2.化学平衡状态


(1) 化学平衡状态是指

其特征是

(2) 化学平衡状态的判定的几个角度

①正、逆反应的速率比

练习:可逆反应 N_2+3H_2 —— $2NH_3$ 的正、逆反应速率可用

$$B \quad v \in (N_2) = v \in (NH_3)$$

②压强的变化 温度、体积一定时,可逆反应 N₂+3H₂==2NH₃进行到压强不再变化,是否达到平衡 温度、体积一定时,可逆反应 $H_2(g)+I_2(g)$ \longrightarrow 2HI(g)进行到压强不再变化,是否达到平 ③混合气体平均式量 一定条件时,可逆反应 N₂+3H₂==2NH₃进行到气体平均式量不再变化,是否达到平衡 若是 $H_2(g)+I_2(g)$ \Longrightarrow 2HI(g)呢____。 ④混合气体密度 温度、体积一定的可逆反应 N_2+3H_2 \longrightarrow $2NH_3$,进行到混合气体密度不变时,是否达到 平衡 _____。 ⑤浓度商与平衡常数的比较 【*】化学平衡常数 K (1) K 的意义是 (2)影响 K 的条件只有 ______;温度增大, K 如何变化_____? (3) 写出以下可逆反应的平衡常数表达式。 $(1) m A(g) + n B(g) \Longrightarrow p C(g) + q D(g)$ $(2)3Fe(s)+4H_2O(g)$ $3Fe_3O_4(s)+4H_2(g)$; $33Br_2(aq) + 6OH^-(aq)$ BrO₃-(aq)+ $5Br^-(aq) + 3H_2O(1)$; 已知 800K 时,可逆反应 CO+H₂O(g) — CO₂+H₂ 的平衡常数 K=1。800K 时该反应进 行至 c (CO)=0.35 mol/L; c (H₂O)=0.65 mol/L; c (CO₂)= c (H₂)=0.50mol/L 时,反应是否处于平 衡状态______; ^ν (正) _____ (">""<""=")^ν (逆)。

● 化学平衡的移动

当影响化学平衡的条件改变时, 平衡就会发生。

- ①当 $^{\nu}$ (正) $>^{\nu}$ (逆) 时, 平衡向方向移动;
- ②当^ν(正) ≮^ν(逆) 时,平衡向方向移动。

[练习]

	丰下,能同时向、	两个方向过	进行的反应,	称为	_反应。
2H	$H_2 + O_2 \xrightarrow{\text{lim}} 2H_2O$ $2H_2O$	电解 2H ₂ ↑+O ₂ ↑			
判断反应	和		是不是可逆	反应	5
2. (1) 在某容	环器内通入气体 A 和 B,发生	E反应: 2A(g)+B	(g) ==== 20	C(g), 反应从	t ₀ 时刻开
始,此时 v ェ f	最大, v ё, 随着反	应的进行,v ェ_	(增大	c或减小), v i	<u>й</u>
(增大或减小	。),到 t ₁ 时刻 v _正 = v _逆 ,此时反	应达到	状态,	' ↑	
反应物 A、B	气体的体积分数发生变	€化,生成物 C	气体的体		
积分数	发生变化,反应物和生成物的	勺混合物处于			\longrightarrow
状态。				t ₀ t ₁	t
(2) 在右图中	中画出此平衡状态形成过程的	勺 v-t 图。			
3. 以下关于化	之学平衡的说法,错误的是(()			
A. 化学 ⁵	平衡与溶解结晶平衡一样,是	是一种动态平衡			
B. 化学 ^马	平衡主要研究的是可逆反应进	进行的程度			
C. 当可证	逆反应达到平衡时, 正逆反应	立都还在进行,位	但反应物和生	三成物的浓度 (保持不变
D. 当一	个可逆反应达到平衡时,正这	逆反应速度都为	零		
4. 对于可逆反	$\sqrt[4]{2}$ HI(g) \longrightarrow I ₂ (g) + H ₂	(g) , 不能够说明	月反应已达平	衡状态的是	()
A. 碘化	氢的浓度不再发生变化				
B. 正逆	反应速率相等				
C. 各物点	质的物质的量浓度比为 2:1:1				
D. 混合	气体的颜色不再变化时				
5. 在一定温度	₹下,可逆反应 2SO₂(g)+O₂((g) === 2SO ₃ (g	g) 达到化学平	等的特征是	()
A. 单位印	寸间内生成 2n mol 的 SO ₂ , 同	司时生成 n mol i	的 O ₂		
B. 单位时	寸间内生成 2n mol 的 SO ₃ ,同	司时消耗 2n mol	的 SO ₂		
C. 容器 🗸	内的总压强不随时间变化				
D. 单位即	可间内生成 $n \mod \mathfrak{O}_2$,同时	付生成 $n \mod \mathfrak{h}$	SO_3		
6. 下列关于化	之 学平衡的移动的说法中,正	三确的是 ()			
A.化学平	衡是一个相对稳定的平衡,	改变外界条件,	平衡不会被	破坏	
B 只要改	变外界条件, 化学平衡一定	发生移动			

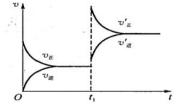
C.若改变某一外界条件	后,正、逆反应速率 发	支生变化,则原平 征	衡状态一定被破坏
D.若改变某一外界条件	后,正、逆反应速率不	下再相等,则原平	衡状态一定被破坏
7. 在一定温度下,向 a L 密	闭容器中加入 1mol X	气体和 2 mol Y ^与	〔体,发生如下反应:
X (g) +2Y (g) =	► 2Z(g) 此反应达到	到平衡的标志是 ()
A.容器内压强不随时间变	化		
B.容器内各物质的浓度不同	随时间变化		
C.容器内 X、Y、Z 的浓度	之比为1:2:2		
D.单位时间消耗 0.1mol X	同时生成 0.2mol Z		
8. 可逆反应 N ₂ +3H ₂ —— 2.	NH ₃ 的正逆反应速率可	丁用各反应物或生,	成物浓度的变化来表示。
下列关系中能说明反应已	比达到平衡状态的是()	
A. $3v \mathbb{E}(N_2)=v \mathbb{E}(H_2)$	B. $v = (N_2) = v =$	(NH ₃)	
C. 2v д(H ₂)=3 v д(NH ₃)	D. $v = (N_2) = 3 v$	· 逆(H ₂)	
9. 下列哪种说法可以证明反	这应. N_2+3H_2 $==$ $2N_1$	H ₃ 已达到平衡状态	芝 (
A. 1 个 N≡N 键断裂的	司时,有3个H—H 铤	建形成	
B. 1 个 N≡N 键断裂的[司时,有3个H—H 键	對裂	
C. 1 个 N≡N 键断裂的[司时,有 6 个 N—H 領	對裂	
D. 1 个 N≡N 键断裂的	司时,有 6 个 N—H 铤	建形成	
10. 在一密闭容器中,反应:	aA(g) B(g)达平	衡后,保持温度7	下变,将容器体积增加一
倍, 当达到新平衡时,	B 的浓度是原来的 60%	%,则()	
A. 平衡向逆反应方向程	8 动了 B. 物质	质 B 的质量分数增	加了
C. 物质 A 的转化率减少	小了 D. a>b	•	
11. 在 2SO ₂ +O ₂	+Q 的平衡体系中,改	变下列条件时,按	安要求将变化情况填入下
表:			
改变条件	正反应速率	逆反应速率	平衡移动方向
(1) 增加压强			
(2) 升高温度			
(3) 加入催化剂			

第11讲 化学平衡移动

[知识梳理]

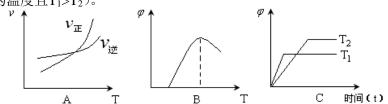
● 化学平衡移动	
(一)概念:	
(二)化学平衡移动的条件	
1、当改变反应条件后,化学平衡移	3动的方向如下:
v (正) >v (逆), 化学平衡	
v (正) <v (逆),="" td="" 化学平衡<=""><td></td></v>	
v (正) =v (逆), 化学平衡	移动
2、影响化学平衡移动的条件	
(1) 浓度对化学平衡移动的影响	
其他条件不变时,增大反应物浓度!	或减小生成物浓度,都可以使化学平衡向移动;
减小反应物浓度或增大生成物浓度	,都可以使化学平衡向
注意: 浓度改变是指浓度、_	浓度的变化,或量的改变不影响平衡
的移动。	
例1: 下列反应在容器中建立化学平	· 衡: SO ₂ + NO ₂ ➡NO+ SO ₃ ,若在容器中通入一定量的
O_2 ,此时反应将会发生的变化是	
A. 平衡向正反应方向移动	B. 平衡将向逆反应方向移动
C. 平衡不发生移动	D. 不使平衡移动,但容器内压强增大
练习 1: 在一密闭容器里进行着可适	逆反应: 2SO ₂ (g) +O ₂ (g) ===2SO ₃ (g), 如该反应达
到化学平衡时测得 SO ₂ 、O ₂ 、SO ₃ 的	的物质的量分别为 0.2mol,0.1mol,0.5mol。这时向平衡
体系再加入 0.1 molO ₂ , 经一段时间	,反应再次达到平衡时,SO3的物质的量可能为
A. 0.6mol B.0.5mol C.0	0.7mol D.0.8mol
练习 2: 在 N ₂ +3H ₂ ─ 2NH ₃ 的平征	衡体系中,当分离出 NH₃时,下列说法正确的是
A. 正反应速率增大	B. 平衡向逆反应方向移动
C. 正反应速率大于逆反应速率	D. 逆反应速率先变小后变大
(2) 压强对化学平衡的影响	
在其他条件不变的情况下,增大压	强,会使化学平衡向着的方向移动,减小压强,
会使化学平衡向着的方	T向移动。

注意: ①增大压强,系数增大方向的速率	区,系数减小方向的速率,系数减小方
向的速率倍数系数增大方向的]速率倍数;减小压强,系数增大方向的速率
和系数减小方向的速率都,但是系	数减小方向的速率倍数系数增大方向
的速率倍数。压强改变对系数	方向速率影响程度更大。
②恒温恒容下,向密闭容器中通入与反应	无关的气体,因为各组分浓度不变,故影响化
学平衡。	
例 2: 压强变化不会使下列反应的化学平	衡发生移动的是
$A, H_2(g) + I_2(g) \longrightarrow 2HI(g)$	B, $N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$
$C \cdot 2SO_2(g) +O_2(g) \longrightarrow 2SO_3(g)$	D, C (s) $+CO_2 \longrightarrow 2CO$ (g)
例 3: 一定量的混合气体在密闭容器中发	生反应: m A (g) + n B (g)
到平衡后,温度不变,将气体体积缩小到	原来的 1/2 但达到平衡时, C 的浓度为原来的 1.8
倍,则下列说法正确的是	
$A \cdot m + n > p$	B、A 的转化率降低
C、平衡向正反应方向移动	D、C 的体积分数增加
例4: 在密闭容器中A+B←←C反应达到	平衡后,增大压强A的转化率增大,若B物质为固
体时,下列说法正确的是	
A. A若为气体,则C一定为气体	B. A可能是气体,C可能是液体
C. A一定是气体,C可能是液体	D. A一定是液体,C一定是气体
练习 3: 一定量的混合气体,在密闭容器	中发生如下反应: $xA(气)+yB(气)$ \longrightarrow $zC(气)$
达到平衡后,测得 A 的浓度为 0.5 mol·	L-1; 在恒温下将密闭容器的体积扩大为平衡时的两
倍,再达到平衡时,测得A的浓度为($0.3~\mathrm{mol\cdot L^{-1}}$ 。则下列的叙述正确的是()。
(A) x+y>z	(B) 平衡向左移动
(C) B的转化率提高	(D) C 的百分含量增大
(3) 温度对化学平衡的影响	
在其他条件不变的情况下,升高温度,会	使化学平衡向着的方向移动;降低温度,
会使化学平衡向着的方向移动。	
注意: 升高温度,放热反应方向速率	,吸热反应方向速率,但是吸热反应方向
速率倍数放热反应方向速率	倍数;降低温度,放热反应方向速率,吸热
反应方向速率,但是吸热反应方	向速率倍数放热反应方向速率
倍数。温度改变,对 方向速率改	· 变影响程度更大。


例5: 在一密闭容器中进行合成氨的反应 N ₂ +3	H_2 \longrightarrow 2NH ₃ Q>0, 达到化学平衡后给体系
降温,下列变化正确的是	
A. 反应混和物中NH ₃ 的含量增多	B. N ₂ 的转化率降低
C. NH ₃ 的产率降低	D. 混和气体的总物质的量增多
练习4: 在一定条件下,发生CO+NO ₂ ← CO) ₂ +NO的反应,达到化学平衡后,降低温度,
混合物的颜色变浅。下列关于该反应的说法正	确的是
A. 该反应为一吸热反应	B. 该反应为一放热反应
C. 降温后CO的浓度增大	D. 降温后各物质的浓度不变
练习5: 下列各反应达到化学平衡后,加压和降	经温使平衡移动的方向不一致的是
A. $2NO_2 \longrightarrow N_2O_4$; Q>0	B. $C(s) + CO_2 \longrightarrow 2CO$; Q<0
C. $N_2 + 3H_2 \longrightarrow 2NH_3$; Q>0	D. $2O_3 \longrightarrow 3O_2$; Q>0
(4)催化剂:催化剂能改变化学反应	的速率,故化学平衡移动,但是可以改
变达到化学平衡的时间。	
(三) 勒夏特列原理: 改变影响平衡的条件,	平衡向着这种改变的方向。
[练习]	
1. 对于平衡状态下的可逆反应 N_2+3H_2 \Longrightarrow $2N_2$	NH ₃ +Q,改变条件,平衡不会发生移动的是
A. 升高温度	B. 增大压强
C. 增大反应物浓度	D. 加入催化剂
2. 己达化学平衡的反应 2X(g)+Y(g)	,减小压强时,对反应产生的影响正确的是
A. 逆反应速率增大,正反应速率减小, ³	严衡逆向移动
B. 逆反应速率减小,正反应速率增大, 平	产衡正向移动
C. 正、逆反应速率都减小,平衡逆向移动	ф
D. 正、逆反应速率都增大,平衡正向移动	ф
3. 对于平衡状态下的可逆反应 2SO₂+O₂ ← 2	SO ₃ +Q(Q>0),改变条件,可使平衡向右移
动的是	
A. 升高温度	B. 增大压强
C. 增大生成物浓度	D. 加入催化剂
4. 对某一可逆反应来说,使用催化剂的目的是	
A. 提高反应物的转化率	B. 缩短反应到达平衡的时间
C. 增大正反应速率,减小逆反应速率	D. 改变平衡混合物的组成

- 5. 下列事实不能用勒夏特列原理解释的是()
 - A. 开启啤酒瓶后, 瓶中马上泛起大量泡沫
 - B. 由 $H_2(g)$ 、 $I_2(g)$ 、HI(g)组成的平衡体系,加压后颜色加深
 - C. 实验室中常用排饱和食盐水的方法收集氯气
 - D. 工业上生产硫酸的过程中使用过量的空气以提高二氧化硫的利用率
- 6. 下列措施或事实中,不能用勒夏特列原理解释的是()
 - A. 新制的氯水光照下溶液颜色变浅
 - B. 铁器在潮湿的空气里较长时间会生锈
 - C. 硫酸工业上 SO₂氧化成 SO₃, 宜采用空气过量
 - D. 合成氨反应常采用加压条件
- 7. 可逆反应 $A(g)+B(g) \Longrightarrow C(g)+D(?)$,达到平衡时,下列说法不正确的是()
 - A. 增大 A 的浓度会使 B 的转化率增大
 - B. 升高温度, C 质量分数减少, 说明正反应为放热反应
 - C. 增加 D 的量, 平衡一定向逆反应方向移动
 - D. 增大压强, 平衡不移动, 说明 D 一定是气体
- 8. 某同学为了探究浓度、压强对化学平衡移动的影响,取不同浓度的氯化铁、硫氰化钾以及密闭体积二氧化氮进行实验。

已知: $FeCl_3+3KSCN$ == $Fe(SCN)_3+3KCl$; $2NO_2$ (红棕色) == N_2O_4 (无色) +Q(Q>0)


	序号	反应物	颜色深浅	
第一组	1	FeCl ₃ (0.1mol/L) KSCN (0.1mol/L)	第 组颜色深	
- 第一组 -	2	FeCl ₃ (0.2mol/L) KSCN (0.1mol/L)	组颜已休	
第二组	3	NO ₂ (10°C)	第 组颜色深	
	4	NO ₂ (30°C)	另组颜巴休 	

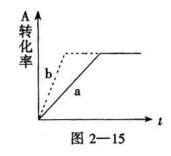
- 9. 一定条件下 2L 的密闭容器中,反应 $aA(g)+bB(g) \iff cC(g)+dD(g)$ (正反应是吸热反应) 达到平衡。(1)若起始时 A 为 1mol,反应 2min 达到平衡,A 剩余 0.4mol,则在 0~2min 内 A 的平均反应速率为_____。
- (2) 在其他条件不变的情况下,扩大容器体积,若平衡向逆反应 方向移动,则 a+b_____c+d(选填">"、"<"或"="), v = (选填"增大"、"减小"或"不变")。

(3) 若反应	过速率(v)与时间(t)的关系如右图所	示,则导致 t_1 时刻	速率发生变化的原	包可能是
(选填	编号)				
a. 增大	:A 的浓度 b	. 缩小容器体积	c. 加入催化剂	d. 升高温	度
10. 下列是	几位同学在学习	了化学反应速率和	化学平衡原理的村	目关知识后,联系化	乙工生产实
际所发表的	看法,其中错误	的是()			
A. 化	学反应速率理论	可以指导我们如何	「利用有限的原料多	多出产品	
B. 化	学反应速率理论	可以指导我们如何	「在一定的时间内惊	决出产 品	
C. 化	学平衡理论可以	指导我们如何将原	[料尽可能多地转化	比为产品	
D. 化	学反应速率和化	学平衡理论可以指	导化工生产提高组	经济效益	
11. 合成氨	时,要又快又多	,可采取的方法是	: ()		
A. 加 <i>)</i>	\催化剂	B. 升高温度	C. 增大压强	D. 分离出	l NH ₃
12. 在一定	条件下,二氧化	硫和氧气发生如下	反应:		
2SO ₂ ($(g) + O_2(g) =$	$ = 2SO_3(g) + Q $) >0)	物版的版 (mod) 0.20	
(1) 写出证	亥反应的化学平衡	新常数表达式		801	
K= _					
(2) 降低溫	温度,该反应 K f	值	 ,	0.10	
二氧化	碳转化率	,化学反应速度	<u>:</u>	0.	
(以上均填	增大、减小或不	变)		\$0,	
(3) 600℃	时,在一密闭容	5器中,将二氧化硫	炭和氧气混合,	5 10 15 2	10 25 30
反应过	程中 SO ₂ 、O ₂ 、S	SO ₃ 物质的量变化	如图,反应处于		新聞 (min)
平衡状	态的时间是		•		
(4) 据图判	判断,反应进行至	臣 20min 时,曲线	发生变化的原因是	(用)	文字表达)
10min	到 15min 的曲线	变化的原因可能是	(填写编	号)。	
a. 加丁	了催化剂 b.	缩小容器体积	c. 降低温度	d. 增加 SO ₃ 的物质	质的量
13.反应①	Fe(s)+CO ₂ (g)	\rightarrow FeO(s)+CO(g)	+akJ;		
反应②	CO(g)+1/2O ₂ (g	$g) \Longrightarrow CO_2(g) + bk$	J		
测得在不同	温度下,反应①	的平衡常数K值随	温度的变化如下:		
	温度/℃	500	700	900	
	K	1.00	1.47	2.40	

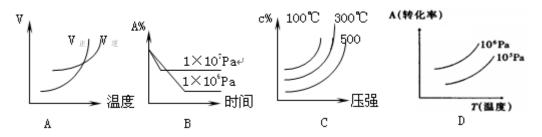
- (2) 700℃反应①达到平衡,要使该平衡向右移动,其它条件不变时,可以采取的措施有 _____(填序号)。
- A. 缩小反应器体积 B. 通入CO₂ C. 升高温度到900℃ D. 使用合适的催化剂
 (3)下列图像符合反应①的是_____ (填序号)(图中v是速率、φ 为混合物中CO
 含量,T为温度且T₁>T₂)。

- (4) 由反应①和②可求得,反应2Fe(s)+O₂(g) **= 2**FeO(s)+Q 的Q=____。
- 14. 己知某可逆反应在密闭容器中进行.

A(g)+2B(g) = C(g)+D(s)放出热


量,图中曲线 a 代表一定条件下该反应的过程。若使 a 曲线变为 b 曲线,可采取的措施是 ()

B. 缩小容器的容积



D. 升高温度

15. 在密闭容器里通 A、B 两种气体,发生如下可逆反应

A(气)+2B(气) \Longrightarrow 2C(气)+2D(气); -Q, 下列示意图正确的是()

- 16、下列变化不能用勒夏特列原理来解释的是
 - A. 红棕色的 NO₂气体加压后颜色先变深再变浅
 - B. H₂、I₂、HI 混合气体加压后颜色变深
 - C. 二氧化硫转化为三氧化硫时增加空气的量以提高二氧化硫的转化率

D. 打开汽水瓶,看到有大量的气泡逸出

17、在某温度下,把 $1 mol N_2$ 和 $3 mol H_2$ 通入一密闭容器里,发生反应: $N_2(g) + 3 H_2(g)$ **2**NH₃(g)(正反应放热),反应达到平衡状态时,改变以下条件:

		新平衡状态				转任	七率		
	条件改变	平衡移动							
		方向	$C(N_2)$	C (H ₂)	C (NH ₃)	NH₃含量	N	Н	
							2	2	
	通入 1molN ₂								
恒	升温								
容	通入氦气								
	移走 1molH ₂								
	通入 1 molN ₂ ,								
	3 mol H_2								
	通入 2molNH ₃								
缩小体积增大压强									

第12讲 电解质的基本概念

[知识梳理]

- 电解质与非电解质
- 一、氯化钠水溶液导电的原因

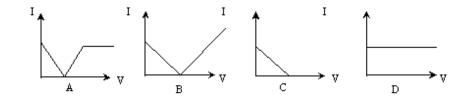
导电是怎么一回事?
NaCl 的水溶液为什么会导电呢? (水溶液的导电能力由什么决定?)
D.
[总结]导电的原因: 带电粒子的定向移动
金属导电:存在自由移动的电子
电解质溶液导电(熔融盐): 自由移动的离子
二、电解质及电离的概念
1.电离: 电解质在水溶液里或熔融状态下离解成自由移动离子的过程。
(不需要通电,这是一个变化)
2.电解质与非电解质
(1) 电解质:在水溶液熔融状态下能导电的化合物。 常见类别 :
(2) 非电解质: 在水溶液中和熔融状态下均不能导电的化合物。
世瓜光則.

提示: 单质和混合物既不是电解质也不是非电解质

注:强碱和绝大多数盐既能在水溶液中导电又能在熔融状态导电;酸只在水溶液中能导电,在熔融态不导电;非电解质在水溶液中和熔融状态下都不导电。

[练习]判断正误,并说明理由:

- 1. 在水溶液中或熔融状态下能够导电的物质一定是电解质。
- 2. 铁能导电, 所以铁是电解质; 硫磺不能导电, 它是非电解质。
- 3. 氢氧化钠固体不导电,所以它不是电解质。
- 4. H₂SO₄的水溶液能导电,但熔融态不导电,它是电解质。
- 5. 碳酸钙、硫酸钡等不溶性盐的水溶液不导电,它们不是电解质。
- 6. CO₂的水溶液能导电,所以它是电解质。


[强化练习]有下列物质: 1. 氢氧化钠固体 2. 铜丝 3. 硫酸溶液 4. 二氧化碳气体 5. 蔗

糖晶体 6. 熔融氯化钠 7. 氯化铂	n溶液 8. 氯化氢气体	9. 氯气 10. 酒精				
(1) 属于电解质的是						
(2) 属于非电解质的是						
(3) 上述状态下可导电的是						
(4) 属于电解质,但在上述状态下	不能导电的是					
● 强电解质与弱电解质						
1、强电解质:	°	常见类别:				
2、弱电解质:	°	常见类别:				
[练习]下列物质属于电解质的是	,非电解	军质的是				
强电解质的是	,弱电解质的是					
(1)NaCl (2)KNO ₃ (aq) (3)SO ₂	(4)Cl ₂ (5) CH ₃ COOH	$(6)C_2H_5OH$ $(7)Al_2O_3$				
(8)HCl (9)稀盐酸 (10)钠 (11)NI	H ₃ ·H ₂ O (12)H ₂ SO ₄	(13) NH ₃				
(14)Cu(OH) ₂	(15)BaSO ₄					
例 2.把 0.05 mol NaOH 固体分别加	入到 100 mL 下列液体中,	溶液的导电能力变化最小的				
A、自来水	B、 0.5 mol / L	. 盐酸				
C、0.5 mol/L CH ₃ COOH 溶	液 D、0.5 mol / L	L KCl 溶液				
● 电离与电离方程式						
(1) 用化学符号表示电解质电离成	自由移动离子的过程。					
(2) 电离方程式的书写:						
HNO ₃	NaOH	NaHCO ₃				
NaHSO ₄	$Mg(NO_3)_2$	H_2CO_3				
Ba(OH) ₂	H_2SO_4	KCl				
CH₃COOH	$NH_3 \cdot H_2O$	H_2S				
说明:①强电解质完全电离,书写离子方程式用"="						
②弱电解质的电离是部分电离,书写离子方程式用" ̄ "						
③多元弱酸是分步电离的,一般由	第一步决定; 多元弱碱的电	1离也分布电离,但一步写完。				
[练习]						
1.下列三种化合物由左到右是按强目						
A. $HC1 \setminus CaCO_3 \setminus SO_2$	B. HClO、H ₂ S、	C_2H_5OH				

C. KNO ₃ 、 CH ₃ COOH 、NH ₃ D. BaSO ₄ 、H ₃ PO ₄ 、H ₂ O	
2.对于强电解质,正确的说法是()	
A. 离子化合物不一定是电解质 B. 在水溶液里全部电离的化合物	
C. 熔化状态下能够导电的物质 D. 离子化合物和共价化合物都是强电解原	质
3.下列电离方程式正确的是()	
A. NaOH \rightarrow Na ⁺ +O ²⁻ + H ⁺ B. H ₂ O \rightarrow H ⁺ +OH ⁻	
C. $HCIO \rightleftharpoons CIO^- + H^+$ D. $CH_3COONH_4 \rightleftharpoons CH_3COO^- + N$	√H ₄ +
4. 下列物质的水溶液能导电,但属于非电解质的是()	
A. CH ₃ CH ₂ COOH B. Cl ₂ C. NH ₄ HCO ₃ D. SO ₂	
5. 下列物质属于强电解质的是()	
A. CO ₂ B. CaCO ₃ C. 石墨 D. H ₂ CO ₃	
6. 下列叙述中,能证明某物质是弱电解质的是()	
A. 水溶液的导电能力很弱 B. 稀溶液中已电离的离子和未电离的分子共存	
C. 在水溶液中,存在分子 D. 熔化状态时不导电	
7. 区别电解质强弱的合理依据是()	
A. 溶液的导电能力 B. 一定浓度时的电离程度	
C. 水溶性大小 D. 与酸或碱反应时消耗酸或碱的量	
8. 下列说法正确的是 ()	
A. 强极性键形成的化合物不一定是强电解质	
B. 强电解质溶液的导电能力一定比弱电解质溶液强	
C. NaCl 溶液在电流的作用下电离成钠离子和氯离子	
D. 氯化钠晶体不导电是由于氯化钠晶体中不存在离子	
9. 下列说法正确的是 ()	
A. 二氧化碳溶于水能部分电离,故二氧化碳属于弱电解质	
B. 氯化钠溶液在电流作用下完全电离成钠离子和氯离子	
C. 硫酸钡难溶于水,但硫酸钡属强电解质	
D. 强电解质溶液的导电性一定比弱电解质溶液的导电性强	
10.下列关于电解质电离的叙述中,不正确的是()	
A. 电解质的电离过程就是产生自由移动离子的过程	
B. 碳酸钙在水中的溶解度很小,但被溶解的碳酸钙全部电离,所以碳酸钙是强电角	军质

C. 氯气和氨气的水溶液导电性都很好, 所以它们是强电解质

D. 水难电离	8,纯水几乎不导电,所	以水是弱电解	!质		
11.只能在水溶液	该中导电的强电解质是 ()			
A. NaOH	B. SO_2	C. HCl	D. Cl	H ₃ COOH	
12.现有以下物质	质:①NaCl 晶体 ②液态	SO3 ③液态的	内醋酸 ④汞	⑤BaSO4 固体	⑥纯蔗糖
(C ₁₂ H ₂₂ O ₁₁) ⑦酒	盾精(C₂H₅OH) ⑧熔化 KN	O ₃ ,请回答下列	可问题(用序号	<u>'</u> †):	
(1) 以上	生物质中能导电的是				
(2) 以上	物质属于电解质的是				
(3) 以上	物质中属于非电解质的	是			
(4) 以_	上物质中属于强电解质的	为是			
(5) 以上	物质中溶于水后形成的	水溶液能导电	的是		
13.写出下列物质	质的电离方程式:				
(1) H ₂ SO ₄					
(2) Ba(OH) ₂					
(3) CH ₃ COO	Н				
(4) NH ₄ Cl					
(5) NH ₃ · H ₂	O				
(6) H ₂ CO ₃ _					
14.电解质溶液导	异电能力的强弱决定于()			
A. 溶液中	离子的浓度	B. 溶剂	夜的浓度		
C. 溶液的	体积	D. 电角	解质本身的化	2学性质	
15.下列各组物质	质反应后,溶液的导电性	比反应前明显	增强的是()	
A. 醋酸里	加入氢氧化钠	B. 向硝	肖酸银溶液中:	通入少量氯化氢	
C. 向氢氧	化钠溶液中通人少量氯气	元 D. 向研	充化氢饱和溶	液中通少量二氧	化硫
16. 在一定温度	E下,冰醋酸加水稀释过	程中,溶液的	导电能力如右	占图 🖳	R
所示。请[可答:			电能力	AOC
	且能力为" 0 "的理由是			能力	17
				/*	V
	三点 pH 值由大到小的顺			—-· (加水量
(3) A, B, C	三点电离度最大的是		o		
17. 向一定位	体积的 Ba(OH) ₂ 溶液中逐	医滴加入稀硫酶	俊,溶液的导	电性(以电流 I	表示)和
滴入的稀硫的体	□积(用 V 表示)间的关	系正确的是()		

第13讲 电离平衡

[知识复习]

1.根据电解质的	的电离程度不	同,可以	以将电解质分为]电解质系	口电解质。	>
2.下列物质中,	属于强电解	厚质的物质	5是	,属于弱电解	² 质的物质是	
A, K ₂ SO ₄ H	$B \setminus H_2S$	C、CH ₃ 0	COOH D	NH ₃ ·H ₂ O E,	酒精 F、和	希硝酸
G、Cl ₂	H、NH ₃	I、CO	J、NH4Cl	K、Al(OH) ₃	L、液态 l	HC1
3.写出下列物质	质在水中的电	國方程式	t:			
(1) HClO ₄ _			(2	2) CH ₃ COONH ₄		
(3) NaHSO ₄				(4) NaHCO ₃		
(5) NH ₃ ·H ₂ O_		(6) HAc				
[知识梳理]						
电离平衡是指:	:在(如:	、)下,当	电解质分子	<u> </u>	的
速率和			的速率	时,电离过	程就达到了平	衡状态。
电离平衡的特征	征 是	_\	\	`	_`	0
1、弱电解质的	的电离平衡概	念: 以酉	昔酸为例:CI	H₃COOH ~		
1)建立平征	衡					

2) 比较化学平衡和电离平衡,形成知识系统

	化学平衡	电离平衡
可逆的含	正、逆反应同时存在	分子电离成离子、离子结合成分子同时存在
义	体系中反应物和生成物同时存	体系中弱电解质分子和离子同时存在(以分
	在是一个平衡体系	子为主)是一个平衡体系
平衡状态	动态平衡	动态平衡
平衡移动	外界条件改变平衡移动	外界条件改变平衡移动
表示方法	可逆反应	电离可逆
特征	等、定、动、变	等、定、动、变

【小结】电离平衡只是化学平衡的一种具体表现

2、影响电离平衡因素

思考:	从化学平衡的知识出发寻找可能对电离平衡产	生影响的因素
结论:	影响电离平衡的因素有	也遵循

例题 1: 向 1mol/L 醋酸溶液中加入各种物质,请按要求完成下表

	平衡移	(11+)	C(III)	C (CH ₃ COO	C(CH ₃ COOH	电离	导电	改变原
	动方向	n(H ⁺)	C(H ⁺)	-))	程度	能力	因
微热								电离吸
DX AM								热
加水								稀释效
MHAK								应
加少量冰醋酸								
加少量 NaOH(s)								
通 HCl(g)								
加少量								同离子
CH ₃ COONa(s)								效应

(1)	内因:	

(2) 外因条件:

①温度:(温度效应)升高温度,平衡向的方向移动,这是因为电离的方向是
②浓度:(稀释效应)在一定温度下,浓度的变化会影响电离平衡。对于同一弱电解质来说,
(A)
溶液越稀,弱电解质的电离程度就越。因此,稀释溶液会促使弱电解质的电离平衡
向的方向移动。(反之,弱电解质分子浓度越大,电离程度越。)
② 同南乙孙 成 加)。今左上起由舰氏且右扣同南乙的起由舰氏(扑) 儿 西庙起由舰氏的

- ③**同离子效应**:加入含有与弱电解质具有相同离子的强电解质(盐),从而使弱电解质的电离平衡朝着生成弱电解质分子的方向移动,弱电解质的电离程度降低的效应称为同离子效应。
- ④化学反应:某一物质将电离出的离子反应掉而使电离平衡向电离方向移动

3、强弱电解质的比较:(包括导电能力等比较)

[例 4]把 0.05mol NaOH 固体分别加入到下列 100mL 液体中,溶液的导电性或导电能力基本不变或变化不大的是 () A. 自来水 B. 0.5mol/L 盐酸 C. 0.5mol/L 醋酸 D. 0.5mol/L 氨水 E. 0.5mol/L 氯化铵溶液

[**例 5**]20℃、30℃下,分别有 pH=5 的醋酸 A、B 各一瓶,则 A、B 醋酸浓度的大小关系为

_____0

变 1 : 常温下,某稀氨水的 pH=a,若	告将该溶液升温至 30℃,pH 变为 b;若将该溶液冷
却至5℃,pH变为c,则a、b、c的	大小关系为。
[例 6] 常温, 0.1 mol/L 的醋酸溶液中, 有 a%	的醋酸发生了电离,恒温稀释该溶液至0.01mol/L,
有 b%的醋酸发生了电离,则醋酸的	的电离程度变, a 与 b 的大小关系为。
变 2: 常温下,某稀醋酸溶液不慎溶	而入一滴蒸馏水,欲使其 pH 恢复原数值,则可选择
升温还是降温?。	
[例 7]1mol/L 的醋酸、盐酸、硫酸各 1L,	分别加入足量的锌, 比较大小(由大到小):
(1) 开始反应时 c(H+)大到小	,pH 大到小
(2) 开始反应时产生氢气的速率	,
(3)最终收集到的氢气的物质的量分别;	
(4)分别稀释 100 倍后溶液的 c(H+)大到	小,pH 大到小
[例 8]有 pH=3 的 CH ₃ COOH 和 pH=3 的	
①物质的量浓度 ②	等体积时与足量铁反应速率及放出氢气体积
③等体积时能中和氢氧化钠的物质的量	量 ④均稀释 10 倍后的 pH
	,分子的浓度和离子的浓度相等 浓度不断发生变化,所以说电离平衡是动态平衡 外界条件改变时,平衡就会发生移动
2. 下列各式中,属于正确的电离方程式	的是()
A. $HCO_3^- + H_2O \implies H_2CO_3 + H_2C$	OH ⁻ B. $HCO_3^- + OH^- \to H_2O + CO_3^{2-}$
C. $NH_3 + H^+ \rightarrow NH_4^+$	D. $NH_3 \cdot H_2O \longrightarrow NH_4^+ + OH^-$
3. 下列电离方程式中,错误的是()
A. $Al_2(SO_4)_3 \rightarrow 2Al^{3+} + 3SO_4^{2-}$	B. $HF = H^+ + F^-$
C. HI \longrightarrow H ⁺ +I ⁻	D. $Ca(OH)_2 = Ca^{2^+} + 2OH^-$
4.在 CH ₃ COOH CH ₃ COO+H+中,要	使电离平衡向右移动,应采取的措施是()
A. 降温 B. 加入浓盐酸	C. 加催化剂 D.加热
5.在 CH ₃ COOH CH ₃ COO+H+中,要	使 c(H ⁺)减小,应采取的措施是()
A. 降温 B. 加入浓盐酸	C. 加催化剂 D.加热

6. 在 Na ₂ HPO ₄ 溶液中,	存在着下列平衡 HPO42-	$+ PO_4^{3^-}$	
$HPO_4^{2^-}+H_2O$	H ₂ PO ₄ ⁻ +OH ⁻ 已知该溶液与	呈碱性。欲使溶液中	i的 HPO4 ²⁻ 、H+、
PO4 ³⁻ 浓度都减小,「	可采取的方法是()		
A. 加石灰水	B. 加盐酸 C. 加;	烧碱 D. 用水	稀释
7. 能使 H ₂ O + H ₂ O 	= H₃O ⁺ +OH [−] 电离平衡向	正反应方向移动,	且使所得溶液是酸性的
措施是()			
A. 在水中加小苏打	B. ā	生水中加稀疏酸	
C. 在水中加明矾固6	D. 图	生水中加 NaH SO4	固体
8. 下列操作中,能使电	离平衡 H₂O ■■ H ⁺ +OH	¯,向右移动且溶 剂	
A. 向水中加入 NaHSO	D ₄ 溶液 B . 向水中加 <i>i</i>	∖ Al ₂ (SO ₄₎₃ 溶液	
C. 向水中加入 Na ₂ CO	⅓溶液 D. 将水加热至	刂100℃,使 pH=6	
9. 在 CH₃COOH 【 	H ⁺ +CH ₃ COO ⁻ 的电离平	,要使电离平? 第中,要使电离平?	
度增大,应采取的措施。	施是()		
A. 加入 NaOH	B. 加入盐酸	D. 升	高温度
10 左00 17 层 1 由 1	7左羊下利亚海、MU.JU.	U NIT' IT'U	- MU.+ 'OU- '
10. 在 0.2mol/L 氨水中存		O NH3-H2O	NH4 +OH , \(\preceq\)
で条件时,表中各项		90 MH3-H2O	NII4 +OII , ∃IX
		pH 值	C (NH ₄ ⁺)
变条件时,表中各项	内容有何变化 :		
变条件时,表中各项 改变条件	内容有何变化 :		
变条件时,表中各项 改变条件 通入氨气至饱和	内容有何变化 :		
变条件时,表中各项 改变条件 通入氨气至饱和 加入少量盐酸	内容有何变化 :		
变条件时,表中各项I 改变条件 通入氨气至饱和 加入少量盐酸 加入少量 NH4CI 加水稀释	内容有何变化: 平衡移动方向	pH 值	C (NH ₄ ⁺)
变条件时,表中各项的 改变条件 通入氨气至饱和 加入少量盐酸 加入少量 NH4Cl 加水稀释	内容有何变化: 平衡移动方向 上酸反应,为了减慢反应返	pH 值 逐率,可向盐酸中加	C(NH ₄ ⁺) 1入物质是()
变条件时,表中各项的 改变条件 通入氨气至饱和 加入少量盐酸 加入少量 NH4Cl 加水稀释 11.足量 Mg 与一定量的盐 A. NaOH 固体	内容有何变化: 平衡移动方向	pH 值 E率,可向盐酸中加 C. CH ₃ COONa	C (NH ₄ ⁺) 1入物质是 () 1 固体 D. MgO
变条件时,表中各项I 改变条件 通入氨气至饱和 加入少量盐酸 加入少量 NH4CI 加水稀释 11.足量 Mg 与一定量的盐 A. NaOH 固体 12. 25℃时,水的电离达	内容有何变化: 平衡移动方向	pH 值 E率,可向盐酸中加 C. CH ₃ COONa	C (NH ₄ ⁺) 1入物质是 () 1 固体 D. MgO
变条件时,表中各项I 改变条件 通入氨气至饱和 加入少量盐酸 加入少量 NH4CI 加水稀释 11.足量 Mg 与一定量的盐 A. NaOH 固体 12. 25℃时,水的电离达 A. 将水加热至沸腾后测	内容有何变化: 平衡移动方向	pH 值 E率,可向盐酸中加 C. CH ₃ COONa	C (NH ₄ ⁺) 1入物质是 () 1 固体 D. MgO
变条件时,表中各项I 改变条件 通入氨气至饱和 加入少量盐酸 加入少量 NH4CI 加水稀释 11.足量 Mg 与一定量的盐 A. NaOH 固体 12. 25℃时,水的电离达 A. 将水加热至沸腾后测 B. 向水中加入稀盐酸,	内容有何变化: 平衡移动方向 上酸反应,为了减慢反应该 B. H ₂ SO ₄ 至到平衡: H ₂ O→H ⁺ +OH ⁻ 得 pH=6,呈酸性 促进水的电离	pH 值 E率,可向盐酸中加 C. CH ₃ COONa	C (NH ₄ ⁺) 1入物质是 () 1 固体 D. MgO
变条件时,表中各项I 改变条件 通入氨气至饱和 加入少量盐酸 加入少量 NH4CI 加水稀释 11.足量 Mg 与一定量的盐 A. NaOH 固体 12. 25℃时,水的电离达 A. 将水加热至沸腾后测	内容有何变化: 平衡移动方向 平衡移动方向 B. H ₂ SO ₄ S到平衡: H ₂ O→H ⁺ +OH ⁻ 得 pH=6, 呈酸性 促进水的电离 NaCl, 平衡逆向移动	pH 值 E率,可向盐酸中加 C. CH ₃ COONa	C (NH ₄ ⁺) 1入物质是 () 1 固体 D. MgO
变条件时,表中各项的 改变条件 通入氨气至饱和 加入少量盐酸 加入少量 NH4Cl 加水稀释 11.足量 Mg 与一定量的盐 A. NaOH 固体 12. 25℃时,水的电离达 A. 将水加热至沸腾后测 B. 向水中加入稀盐酸, C. 向水中加入少量固体 D. 向水中加入稀氨水,	内容有何变化: 平衡移动方向 平衡移动方向 B. H ₂ SO ₄ S到平衡: H ₂ O→H ⁺ +OH ⁻ 得 pH=6, 呈酸性 促进水的电离 NaCl, 平衡逆向移动	pH 值 E率,可向盐酸中加 C. CH ₃ COONa -Q,下列叙述正确	C(NH ₄ +) 1入物质是() a 固体 D. MgO 自的是()

红色	黄色				
浓度为 0.02 mo	I • L⁻¹ 的各溶液①盐酸②	②石灰水	③NaCl 溶液	④NaHSO4溶液	⑤氨水
其中能使指示剂	可显红色的是 ()				
A. 1145	B. 26	C. 1)4)	D.	23	
14.下列事实能证	说明醋酸(CH₃COOH):	是弱酸的是	是()		
A. 醋酸溶	液能使紫色石蕊试液变	红			
B. 将 pH=	3 的醋酸溶液稀释 10 倍	,溶液的	pH<4		
C. 醋酸溶	液能与鸡蛋壳反应生成	二氧化碳			
D. 等体积	浓度的醋酸溶液与氢氧	化钠溶液物	合好完全反应		
15.能够说明氨对	水是弱碱的事实是 ()				
A. 氨水具	有挥发性	B.	0.1mol/L 氯水	容液 pH=11	
C. 氨水溶	液能导电	D.	氨水能与硫酸	反应	
16.氨水溶液中石	字在的平衡体系有				
(写出有关的方	万程式),所含有的微粒是			。加入NH	4Cl晶体,
溶液的碱性	(填"增大""	减小""不	·变")		
液中加入 CuSC 平衡向	存在着 H ₂ S F ₀₄ 溶液后,,S ²⁻ 会与 Cu ²⁺ 移动,[S ²⁻]	+生成难溶	于水难溶于酸	的 CuS 沉淀,则 I	H ₂ S 的电离
[H ₂ S]					
	质溶液的相关知识,回答 列 6 种物质:①氯化氢、			j萄糖、⑤氯化钾、	⑥氯气,
其中属于非电解	军质的是(填绵	扁号);熔隔	独状态能导电的	的是(填	编号),它
的电离方程式是	<u>.</u>				o
(2) 25℃时	, 0.01mol/L 的盐酸的 p	H 为	,稀释	10 倍后 pH 为	o
0.01mol/L 醋酸	溶液中 c(H+)0.0	1mol/L (‡	真" > "、" < "	或 "="), 写出面	昔酸的电离

方程式: _____

第15 讲 水的离子积和 pH 值计算

[知识梳理]

一、水的电离

水是_____(填电解质/非电解质),发生发生微弱的(自偶)电离。

$$H_2O + H_2O \rightarrow H_3O^+ + OH^-$$

简写: $H_2O \rightarrow H^+ + OH^-$

实验测定: 25℃ c (H⁺) =c (OH⁻) =1×10⁻⁷ mol/L

$$100^{\circ}\text{C c }(H^{+}) = \text{c }(OH^{-}) = 1 \times 10^{-6} \text{ mol/L}$$

二、水的离子积(Kw)

实验测定: 25° C K_w = c (H⁺)·c (OH⁻) = 1×10^{-14} (定值); 100° C K_w = c (H⁺)·c (OH⁻) = 1×10^{-12}

理解Kw时要注意以下几点:

①Kw只与温度有关,因为水的电离过程是吸热过程,温度升高,水的电离程度增大,Kw 也增大。

对于中性水,尽管Kw温度升高,电离度增大,但仍是中性水,[H+]=[OH-].

②Kw不仅适用于纯水,还适用于酸或碱的稀溶液。无论哪种溶液均存在

中性溶液,
$$c(H^+) = c(OH^-) = 1 \times 10^{-7} \text{ mol/L}$$

酸性溶液: $c (H^+) > c (OH^-)$, $c (H^+) > 1 \times 10^{-7} mol/L$ $c (OH^-) < 1 \times 10^{-7} mol/L$

碱性溶液: $c(H^+) < c(OH^-)$, $c(H^+) < 1 \times 10^{-7} \text{mol/L}$ $c(OH^-) > 1 \times 10^{-7} \text{mol/L}$

c (H+) 越大, 酸性越强; c (OH-) 越大, 碱性越强。

三、溶液pH值的计算

1.pH的计算公式:

(1)
$$K_w = c \ (H^+) \ c \ (OH^-), \ c \ (H^+) = \frac{Kw}{c \ (OH)}$$
 $c \ (OH^-) = \frac{Kw}{c \ (H^+)}$

(2) pH=-lgc (H^+)

2.酸或碱溶液及稀释后的p H值的计算(25℃)

1) 强酸强碱溶液(单一溶液)p H值的计算

例1. 求0.1mol/L的HCl和NaOH的pH值。

例2. 求pH=1的HCl的浓度;求pH=12的NaOH的浓度

2) 强酸或强碱溶液稀释后的pH值的计算(25℃)

[**例题1**]求将10m L pH=5的盐酸稀释到100m L, 10000m L后溶液的pH值。

[练习1]求将10m LpH = 12的氢氧化钠溶液稀释到100m L,10000m L后溶液的pH值。

[小结1]

- ①强酸溶液, pH (稀释) = pH (原来) + lg n (n为稀释的倍数)
- ②强碱溶液, pH (稀释) = pH (原来) lg n (n为稀释的倍数)

3.强酸溶液混合后溶液的pH计算

[例题] p H=1的盐酸与pH=5的盐酸等体积混合后溶液的pH值为多少?

[练习] p H=2的盐酸与p H=4的盐酸按体积比2: 1混合后溶液的pH值为多少?

[小结2]

两强酸溶液混合时,设酸1中H+浓度为 C_1 ,体积为 V_1 ; 设酸2中H+浓度为 C_2 ,体积为 V_2 则: $C(H^+)(混) = \underline{\hspace{1cm}}; \ pH \ (混) = \underline{\hspace{1cm}}$

4.强酸与强碱溶液的混合

[例题]50m L0.6mol/L NaOH溶液和50m L0.4mol./L硫酸相混合后,溶液的pH约为多少?

[练习]50m L0.6mol/L NaOH溶液和50m L0.4mol./L盐酸相混合后,溶液的pH约为多少?

[小结3] 在酸碱反应中应先求出酸或碱哪者过量,再求溶液的pH

四、水电离产生的 $\mathbf{c}(\mathbf{H}^+)$ 、 $\mathbf{c}(OH^-)$ 的计算

例4:某温度下纯水中 $C(H^+)=2\times 10^{-7} \text{ mol/L}$,则此时溶液中的 $C(OH^-)=$
若温度不变,滴入稀盐酸使 $C(H^+)=5\times10^{-6}$ mol/L,则此时溶液中的 $C(OH^-)=$
此溶液中水电离产生的 $c(H^+)=$,水电离产生的 $c(OH^-)=$
答案: 2×10 ⁻⁷ mol/L 8×10 ⁻⁹ mol/L 8×10 ⁻⁹ mol/L 8×10 ⁻⁹ mol/L
【变式训练9】 室温下,在pH=12的某溶液中,由水电离的 $c(OH^-)$ 为
A. $1.0 \times 10^{-7} \text{ mol/L}$ B. $1.0 \times 10^{-6} \text{ mol/L}$ C. $1.0 \times 10^{-2} \text{ mol/L}$ D. $1.0 \times 10^{-12} \text{ mol/L}$
【变式训练10】以下对常温时pH为9的KOH溶液与pH为9的Na ₂ CO ₃ 溶液中由水电离出的
C(H+)的比较中,正确的是 ()
A. 两者相等 B. 前者是后者的5倍 C. 后者是前者的10 ⁴ 倍 D. 无法比较
考点五:溶液pH的计算
[规律的小结]:
1. 水电离出的c(H+)和c(OH·)的算法:
①强酸溶液,水电离出的 $\mathbf{c}(\mathbf{H}^{\scriptscriptstyle +})$ 可由其 \mathbf{pOH} 值来计算,②强碱溶液,水电离出的 $\mathbf{c}(\mathbf{H}^{\scriptscriptstyle +})$
可由其pH值直接计算; ③强碱弱酸盐溶液,水电离出的c(H+)可由其pOH值来计算; ④
强酸弱碱盐溶液,水电离出的c(H+)可由其pH值直接计算;
【练习】
1. 常温下,在 0.1 mol/L 的醋酸溶液中,水的离子积是()
A. 1×10^{-12} B. 1×10^{-14} C. 1×10^{-11} D. 1×10^{-13}
A. 1×10 ⁻¹² B. 1×10 ⁻¹⁴ C. 1×10 ⁻¹¹ D. 1×10 ⁻¹³ 2. 下列溶液一定呈中性的是()
2. 下列溶液一定呈中性的是 ()
2. 下列溶液一定呈中性的是() $A. \ c(H^+) = 10^{-7} \ 的溶液 \qquad B. \ c(H^+) \cdot c(OH^-) = 1 \times 10^{-14} \ 的溶液$
 下列溶液一定呈中性的是 () A. c(H⁺)=10⁻⁷ 的溶液 B. c(H⁺)·c(OH⁻)=1×10⁻¹⁴ 的溶液 C. pH=7 的溶液 D. 醋酸与醋酸钠的混合溶液中 c(Na⁺)=c(Ac⁻)
 下列溶液一定呈中性的是 () A. c(H⁺)=10⁻⁷ 的溶液 B. c(H⁺)·c(OH⁻)=1×10⁻¹⁴ 的溶液 C. pH=7 的溶液 D. 醋酸与醋酸钠的混合溶液中 c(Na⁺)=c(Ac⁻) 9. 纯水在 25℃和 80℃时的氢离子浓度,前后两个量的大小关系为 ()
 下列溶液一定呈中性的是 () A. c(H⁺)=10⁻⁷ 的溶液 B. c(H⁺)·c(OH⁻)=1×10⁻¹⁴ 的溶液 C. pH=7 的溶液 D. 醋酸与醋酸钠的混合溶液中 c(Na⁺)=c(Ac⁻) 4. 纯水在 25℃和 80℃时的氢离子浓度,前后两个量的大小关系为 () A. 大于 B. 等于 C. 小于 D. 不能确定
 下列溶液一定呈中性的是 () A. c(H⁺)=10⁻⁷ 的溶液 B. c(H⁺)·c(OH⁻)=1×10⁻¹⁴ 的溶液 C. pH=7 的溶液 D. 醋酸与醋酸钠的混合溶液中 c(Na⁺)=c(Ac⁻) 4. 体水在 25℃和 80℃时的氢离子浓度,前后两个量的大小关系为 () A. 大于 B. 等于 C. 小于 D. 不能确定 4. 体积相同、pH 也相同的盐酸与醋酸,分别与足量的碳酸钠溶液反应,相同条件下,放出
 下列溶液一定呈中性的是() A. c(H⁺)=10⁻⁷ 的溶液 B. c(H⁺)·c(OH⁻)=1×10⁻¹⁴ 的溶液 C. pH=7 的溶液 D. 醋酸与醋酸钠的混合溶液中 c(Na⁺)=c(Ac⁻) 4. 纯水在 25℃和 80℃时的氢离子浓度,前后两个量的大小关系为() A. 大于 B. 等于 C. 小于 D. 不能确定 4. 体积相同、pH 也相同的盐酸与醋酸,分别与足量的碳酸钠溶液反应,相同条件下,放置二氧化碳气体的体积是()
 下列溶液一定呈中性的是() A. c(H⁺)=10⁻⁷ 的溶液 B. c(H⁺)·c(OH⁻)=1×10⁻¹⁴ 的溶液 C. pH=7 的溶液 D. 醋酸与醋酸钠的混合溶液中 c(Na⁺)=c(Ac⁻) 3. 纯水在 25℃和 80℃时的氢离子浓度,前后两个量的大小关系为() A. 大于 B. 等于 C. 小于 D. 不能确定 4. 体积相同、pH 也相同的盐酸与醋酸,分别与足量的碳酸钠溶液反应,相同条件下,放置二氧化碳气体的体积是() A. 醋酸多 B. 盐酸多 C. 一样多 D. 无法比较

6.pH=2的盐酸溶液稀释 100倍,pH=;pH=5的盐酸溶液稀释 100倍,pH=;
pH=9 的氢氧化钠溶液稀释 100 倍, pH=; pH=12 的氢氧化钠溶液稀释 100 倍,
pH=;酸雨主要是因为大量燃烧含硫的煤和石油所引起的,若测定某地某次雨
水的数据如下: $c(NH_4^+)=2.0\times10^{-5}$ mol/L $c(Cl^-)=6.0\times10^{-5}$ mol/l
$c(Na^{+}) = 1.9 \times 10^{-5} \text{mol/L}$ $c(NO_{3}^{-}) = 2.3 \times 10^{-5} \text{mol/L}$ $c(SO_{4}^{2-}) = 2.8 \times 10^{-5} \text{mol/L}$
则此雨水的 pH 为。
7. 下列四种溶液中,由水电离生成的氢离子浓度之比(①:②:③:④)是()
①pH=0的盐酸 ②0.1 mol/L 的盐酸 ③0.01 mol/L 的NaOH溶液
④pH=11的NaOH溶液
A. 1:10:100:1000 B. 0:1:12:11
C. 14:13:12:11 D. 14:13:2:3
8. 室温下,在pH=12的某溶液中,由水电离的c(OH¯)为()
A. $1.0 \times 10^{-7} \text{mol/L}$ B. $1.0 \times 10^{-6} \text{mol/L}$ C. $1.0 \times 10^{-2} \text{mol/L}$ D. $1.0 \times 10^{-12} \text{mol/L}$
各种指示剂变色时的pH值
9. 某溶液能分别使甲基橙变黄色,酚酞试液呈无色,使石蕊试液呈红色,则该溶液的pH范
围是()
A. 小于 8 B. 大于 4.4 C. 小于 5 D. 4.4~5
强酸与弱酸稀释过程中 pH 的变化
10. 将体积都为10 mL、pH都等于3的醋酸和盐酸,加水稀释至a mL和b mL,测得稀释后溶
液的pH均为5。则稀释后溶液的体积()
A. $a=b=100 \text{ ml}$ B. $a=b=1000 \text{mL}$ C. $a < b$ D. $a > b$
11. 将 $pH=5$ 的 H_2SO_4 溶液稀释1000倍后,溶液中 SO_4^2 高子浓度与 H +离子浓度的比值约为
() A. 1:10 B. 1:1 C. 1:2 D. 1:20
A. 1:10 B. 1:1 C. 1:2 D. 1:20
A. 1:10 B. 1:1 C. 1:2 D. 1:20 不同浓度的酸或碱溶液混合后 pH 值计算
A. 1:10 B. 1:1 C. 1:2 D. 1:20 不同浓度的酸或碱溶液混合后 pH 值计算 12. 常温下 pH=9 和 pH=11 的两种 NaOH 溶液等体积混合后的 pH 值。
A. 1:10 B. 1:1 C. 1:2 D. 1:20 不同浓度的酸或碱溶液混合后 pH 值计算 12. 常温下 pH=9 和 pH=11 的两种 NaOH 溶液等体积混合后的 pH 值。 强酸与强碱混合后的 pH 值计算
A. 1:10 B. 1:1 C. 1:2 D. 1:20 不同浓度的酸或碱溶液混合后 pH 值计算 12. 常温下 pH=9 和 pH=11 的两种 NaOH 溶液等体积混合后的 pH 值。 强酸与强碱混合后的 pH 值计算 13. pH=13的强碱溶液和pH=2的强酸混合,所得混合液的pH=11,则强碱与强酸的体积比
A. 1:10 B. 1:1 C. 1:2 D. 1:20 不同浓度的酸或碱溶液混合后 pH 值计算 12. 常温下 pH=9 和 pH=11 的两种 NaOH 溶液等体积混合后的 pH 值。 强酸与强碱混合后的 pH 值计算 13. pH=13的强碱溶液和pH=2的强酸混合,所得混合液的pH=11,则强碱与强酸的体积比是()
A. 1:10 B. 1:1 C. 1:2 D. 1:20 不同浓度的酸或碱溶液混合后 pH 值计算 12. 常温下 pH=9 和 pH=11 的两种 NaOH 溶液等体积混合后的 pH 值。 强酸与强碱混合后的 pH 值计算 13. pH=13的强碱溶液和pH=2的强酸混合,所得混合液的pH=11,则强碱与强酸的体积比是() A. 1:9 B. 9:1 C. 1:11 D. 11:1

第16讲 盐类水解

[知识梳理]

一、探究盐溶液的酸碱性

结论: 强酸弱碱盐显酸性,强碱弱酸盐显碱性,强酸强碱盐显中性。

二、盐溶液呈现不同酸碱性的原因, 盐类发生水解

三、盐的水解原理

1.定义:在溶液中,盐电离出来的阴离子或阳离子与水所电离出来的 H⁺或 OH⁻结合生成弱电解质,这种作用叫做盐类的水解。

2.实质:促进水的电离平衡。

结果: 盐的溶液呈现出不同程度的酸、碱性。

3.水解条件

a.盐必须溶于水中

b.生成盐的酸或碱是弱酸或弱碱(有弱才水解,无弱不水解,都弱双水解)

4.水解特征

水解是微弱、可逆的,用可逆符号" === "

【小结】水解规律:

有弱才水解,无弱不水解,都弱双水解,谁强显谁性,都强显中性

5 盐溶液中水的电离规律

【例题】1、pH=3 的 HCl 和 pH=11 的 NaOH 溶液中由水电离出来的 $c(H^+)_*$

2、pH=3 的 NH₄Cl 和 pH=11 的 CH₃COONa 溶液中由水电离出来的 c(H⁺)_{*}

【小结】盐溶液中水的电离有如下规律:

a.在强酸弱碱盐溶液中,盐的水解促进了水的电离,水的电离程度比纯水、酸或碱溶液(抑制水的电离)中水的电离程度大。

b.在酸或碱溶液中, $c(H^+)$ 、 $c(OH^-)$ 中小的那一个表示水的电离;在盐溶液中, $c(H^+)$ 、 $c(OH^-)$ 中大的那一个反映了水的电离程度。

四、水解方程式的书写

- (1) 判断能否水解;
- (2) 水解是微弱的,用可逆符号表示。通常不生成沉淀或气体,也不发生分解。在书写离子方程式时一般不标"」"或"↑",也不把生成物(如 H_2CO_3 、 NH_3 · H_2O 等)写成其分解产物的

形式;

- (3) 多元弱酸的盐分步水解,以第一步为主。
- (4) 多元弱碱盐的水解视为一步完成。
- (5) 双水解——不完全双水解与完全双水解 不完全水解用可逆符号,完全水解用等号表示。

五、盐类水解的影响因素

1.内因——越弱越水解(越热越水解,越稀越水解)

以醋酸钠为例: CH₃COO-+H₂O == CH₃COOH+OH- K_h

$$K_{h} = \frac{c(CH_{3}COOH) \cdot c(OH^{-})}{c(CH_{3}COO^{-})} = \frac{c(CH_{3}COOH) \cdot c(OH^{-}) \cdot c(H^{+})}{c(CH_{3}COO^{-}) \cdot c(H^{+})}$$
$$= \frac{K_{w}}{K}$$

弱酸或弱碱的电离常数越(越弱),其所生成的盐水解的程度就越大。

2.外因: 温度、浓度、酸 or 碱、盐溶液

【例题】在氨水中存在下列平衡: $NH_3 \cdot H_2O \longrightarrow NH_4^+ + OH^-$,若加入下列物质对该平衡有何影响?(1) NH_4Cl 固体(逆向)(2) Na_2CO_3 固体(逆向)(3) $FeCl_3$ 固体(正向)

【总结】判断溶液中平衡移动方向的一般思路:

- ①加入的物质是否与之反应;
- ②加入的物质是否与之有同离子效应;
- ③若前两项都不具备则考虑水解问题。

六、水解平衡的应用

- (1)判断盐溶液的酸碱性或 pH
- (2)配置和储存易水解的盐溶液

【例题】如何配制 $FeCl_3$ 、 $AlCl_3$ 、 $CuCl_2$ 、 $SnCl_2$ 等强酸弱碱盐溶液?

Na₂SiO₃、Na₂CO₃、NH₄F等能不能储存在有磨口玻璃塞的试剂瓶中?

(3)某些活泼金属与强酸弱碱盐反应

【例题】镁常温下不易与水发生反应,但镁粉放入氯化铵的水溶液中有氢气放出?

(4)判断离子能否大量共存

弱碱的金属阳离子(如 Al^{3+} 、 Cu^{2+} 、 NH_4 +、 Fe^{3+} 等)与弱酸的酸根(如 HCO_3 -、 CO_3 ²、

SiO₃²、AlO₂、F等)在溶液中不能同时大量共存。

(5)施用化肥

长期施用(NH₄)₂SO₄的土壤酸性增强;草木灰(K₂CO₃)不能与铵态氮肥混用。

(6)加热蒸干某些盐溶液制取其他产物

a 水解: 盐溶液水解生成难挥发性酸时,蒸干后一般得原溶质,如 Al(SO₄)₂、CuSO₄ 盐溶液水解生成不挥发碱和弱酸时,蒸干也得到原溶质,如 K₂CO₃、Na₂S 盐溶液水解生成易挥发性酸时,蒸干后一般得对应的弱碱,如 AlCl₃、FeCl₃ b 分解: 若盐的热稳定性差,加热蒸干得到其分解产物,如 Ca(HCO₃)₂、NaHCO₃、KMnO₄、NH₄Cl

c氧化:若盐的还原性强,加热蒸干得到其氧化产物,如NaSO₃、FeSO₄。

(7)泡沫灭火器 (Al₂(SO₄)₃、NaHCO₃)

(7)1E4K)C)CHF (A12(5O4)	35 MailCO37		
$Al^{3+} + 3HCO_3^- = Al(OH)_3$.+3CO ₂ ↑		
Al³+不与CO₃²、HCO₃⁻、	AlO ₂ -、S ² -共存,Fe	e ³⁺ 不与 CO ₃ ²⁻ 、HCC	O ₃ -、AlO ₂ -共存
[练习]			
1.下列物质的水溶液显碱	性的是(
A. FeCl ₃	B. CH ₃ COONa	C. KNO ₃	D. Al ₂ (SO ₄) ₃
2.在盐类的水解过程中,	下列叙述正确的是	()	
A. 盐的电离平衡被	破坏	B. 水的电	离平衡被破坏
C. 没有能量变化		D. 溶液的	pH 一定变大
3.下列离子,在水溶液中	不发生水解的是()	
A. CH ₃ COO ⁻	B. Cl	C. NH ₄ ⁺	D. Cu ²⁺
4.现有 S ²⁻ 、SO ₃ ²⁻ 、NH ₄ +、	$A1^{3+}$ Na^+ SO_4^{2-}	、Fe ³⁺ 、Cl ⁻ 等离子,	请按要求填空:
(1) 在水溶液中,该离	子水解呈碱性的是_		o
(2) 在水溶液中,该离	子水解呈酸性的是_		0
5.下列各物质投入水中,	因促进水的电离而	使溶液呈酸性的是	()
A. NaHSO ₄	B. CH ₃ COONa	C. CH ₃ COO	H D. $Al_2(SO_4)_3$
6.物质的量浓度相等的下	列溶液,pH 由大到	小的顺序排列正确	的是()
A. Na ₂ CO ₃ , NH ₄ Cl	、NaCl、HCl	B. Na ₂ CO ₃ ,	NaCl 、NH4Cl 、HCl
C. HCl、NH ₄ Cl、N	aCl Na ₂ CO ₃	D. NH ₄ Cl ₃ N	Ia ₂ CO ₃ , NaCl, HCl
7.下列说法中正确的是()		
A No CO 水椒的	T 無公社 D	彩空淡游 旦 由 歴	1.由工融验经不入发生业级

- A. Na₂CO₃ 水解的呈酸性 B. 醋酸铵溶液呈中性,是由于醋酸铵不会发生水解
- C. 盐的水解可视为中和反应的逆反应 D. 某溶液呈酸性,一定是强酸弱碱盐溶液

8. 0.10mol/L 的 NH ₄ Cl 溶液中	,离子浓度最小的是	()	
$A. \ NH_4{}^{\scriptscriptstyle +} \qquad \qquad B. \ H^{\scriptscriptstyle +}$	C. Cl D. OH	-	
9. 在 CH₃COONa 溶液中,各种	中离子浓度从小到大的]顺序是()	
A. $c(H^+) \leq c(OH^-) \leq c(CH)$	$_{3}COO^{-}) \le c(Na^{+})$		
B. $c(H^{+}) \le c(OH^{-}) \le c(Na^{+})$) <c (ch<sub="">3COO⁻)</c>		
C. $c(H^+) < c(CH_3COO^-) <$	$c(OH^-) \le c(Na^+)$		
D. $c(OH^{-}) \le c(CH_3COO^{-})$	$< c(H^+) < c(Na^+)$		
10.在 NH4Cl 溶液里,加入下	列物质使抑制水解平衡	新的是()	
A. 加少量液氨 B. 力	п少量 NaCl 固体	C. 加少量 NaOH 固体	D. 加水稀释
11.物质的量浓度相同的三种盐	上 NaX、NaY、NaZ 的	的溶液,测定其 pH 依と	欠为 8、9、10,则
HX、HY、HZ 的酸性由强到	弱的顺序是()		
A. $HX > HZ > HY$ B.	HZ > HY > HX	C. HX > HY > HZ	D. $HY > HX > HZ$
12.为了配制 NH4+的浓度与 Cl	上的浓度比为 1:1 的浓	容液,可在 NH ₄ Cl 溶液	中加入()
①适量的 HCl ②适	量的 NaCl ③	适量的氨水 ④	适量的 NaOH
A. ①②	В. ③	C. 34	D. ④
13.下列有关问题,与盐的水角	军有关的是()		
①加热蒸干 AlCl ₃ 溶液得	到 Al(OH)3 固体		
②用 NaHCO3与 Al2(SO4))3 两种溶液可作泡沫及	灭火剂	
③草木灰与铵态氮肥不能	混合施用		
④实验室盛放 Na ₂ CO ₃ 溶	液的试剂瓶不能用磨口] 玻璃塞	
A. 1)2(3)	B. 234	C. ①④	D. 1234
14.取一定量 0.1mol/L 的 FeCl	3 溶液,进行如下实验	::	
(1) 在室温下,用 pH 试纸测	则定 FeCl₃溶液,测得	pH 7(填"<"	" >" 或" =")。
(2) 加热 FeCl₃溶液,溶液的			
程度(填"增弱	_		
(3)向 FeCl ₃ 溶液中通入 HCl		(填"增大""	减小"或"不变"),
FeCl ₃ 的水解程度			
15.常温下,有两种溶液: ①0	.1mol · L ⁻¹ CH ₃ COOH	20.1 mol · L-1CH ₃ CO	OONa
(1)溶液①的 pH	7(填">	""<"或"=")	其原理是
(用电离方程式表示)			
(2)溶液②呈碱性,原因是	(填微粒符号	号) 水解使溶液呈碱性	,向溶液中加入醋
酸钠固体可以使碱性(填"增大""减小" 및	戈"不变")	

(3)下列说法正确的是(填序号).
a. 两种溶液中 c(CH ₃ COO ⁻)都等于 0.1 mol · L ⁻¹
b. 两种溶液中 c(CH ₃ COO ⁻)都小于 0.1 mol · L ⁻¹
c. CH ₃ COOH 溶液中 c(CH ₃ COO-)小于 CH ₃ COONa 溶液中 c(CH ₃ COO-)
16. 物质的量浓度相同的下列溶液中,NH ₄ ⁺ 浓度最大的是()
A. NH ₄ Cl B. NH ₄ HSO ₄ C. CH ₃ COONH ₄ D. NH ₄ HCO ₃
17. 某溶液中 FeCl₃ 的水解反应已达到平衡: FeCl₃ + 3H₂O→→ Fe(OH)₃ + 3HCl, 若要使 FeCl₃
的水解程度增大,应采用的方法是()
A. 加入 NaHCO ₃ B. 加入 AgNO ₃ C. 加 FeCl ₃ 固体 D. 加热
18. 物质的量浓度相同的三种盐 NaX、NaY 和 NaZ 的溶液,其 pH 值依次为 8、9、10,则
HX、HY、HZ 的酸性由强到弱的顺序是 ()
A HY H7 HV R H7 HV HY C HY HV H7 D HV H7 HY

第17讲 电解池

[知识回顾]电解饱和食盐水 总化学方程式: ______ 阳极现象: 阴极现象: [知识梳理] 一、电解 CuCl₂溶液 1).装置 2). 实验现象和结论 实验现象 结论 电流表指针发生偏转 说明电解质溶液在导电,形成闭合回路 与负极相连的石墨棒上逐渐覆盖了一层 固体 析出金属_____ 与正极相连的碳棒一侧有刺激性气味的气体产 产生了____ 生,湿润的 KI 淀粉试纸变 3)实验原理分析 (1)通电前, Cu^{2^+} 、 H^+ 、 Cl^- 以及 OH^- 在溶液中作______,,通电时,在电场的作用下 这些自由运动的离子改作______运动即 Cl^- 、 OH^- 等阴离子趋向_____极, Cu^{2^+} 、 H^{+} 等阳离子趋向 极。 (2)两个电极上的反应,和总反应: 阳极(与电源正极相连): _____。

阴极(与电源负极相连): _____。

(3)结论: 电解质溶液的导电过程, 就是电解质溶液的 过程。

(1)定义: 在外加电源的作用下,将________能转化为_______能的装置。

1).电解 使电流通过电解质溶液在两个电极上引起氧化还原反应的过程。

75

总反应:

2、电解原理

2). 电解池

- (2)构成条件:有<u>外加电源;电解质</u>溶液或熔融<u>电解质;</u>两个电极;形成<u>闭合回路。</u> 阴极:与电源___极相连,发生___反应,阳极:与电源___极相连,发生___反应
- (3) 工作原理: 电解质溶液(或熔融电解质)通电时发生以下过程:

电子从电源的负极沿导线流入电解池的阴极,电解质的阳离子移向阴极得电子发生还原 反应;电解质的阴离子移向阳极失去电子(有的是组成阳极的金属原子失去电子)发生氧化 反应,电子从电解池的阳极流出,并沿导线流回电源的正极。

探究问题

- 1、溶液中含有 Cu^{2+} 、 H^+ 为什么是 Cu^{2+} 去阴极得电子,而不是 H^+ 呢?
- 2、电解 CuCl₂溶液产生 Cl₂的两电极能用铁吗?

[知识拓展与迁移]

1、电解时 电极产 物的判断

- (1)阳极产物的判断
- ①活性金属电极(金属活动性顺序表 Pt 之前金属)
- 金属电极失电子,被溶解,生成对应金属阳离子。
- ②惰性电极(Pt、Au、C)

溶液中阴离子失电子,生成对应非金属单质。

阴离子放电顺序: S²⁻>I->Br->Cl->O.H->含氧酸根>F-。

(2)阴极产物的判断

与电极材料无关,阳离子放电,直接根据阳离子放电顺序进行判断,阳离子放电顺序: $Ag^+>Hg^{2^+}>Fe^{3^+}>Cu^{2^+}>H^+_{(\cite{R})}>Pb^{2^+}>Sn^{2^+}>Fe^{2^+}>Zn^{2^+}>H^+_{(\cite{R})}>Al^{3^+}>Mg^{2^+}>Na^+>Ca^{2^+}>K^+_{(\cite{R})}$

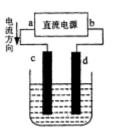
- 2、电解池阴、阳极判断方法
- r(1)阴极: 析出金属(质量增重)或有气体(H₂)放出; 连接电源__极, 电子___, 电流____, ___ 离子移向。
- (2) 阳极:有非金属单质生成,是气态的有 Cl_2 、 O_2 或电极本身减轻;连接电源__极,电子___,电流____,。___离子移向。
- 3、用.惰性电极电解电解质溶液的一般规律

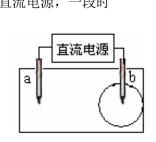
恢复电解质原状应遵循"缺什么加什么,缺多少加多少"

[练习]

- 1. 下列有关电解池的说法不正确的是()
 - A. 电解池是把电能转化为化学能的装置
 - B. 电解池中阴离子向阴极移动, 阳离子向阳极移动
 - C. 电解池中与电源正极相连的一极是阳极,发生氧化反应

D. 电解质溶液的导电过程就是电解质溶液的电解过程 2. 右图是电解饱和食盐水的装置, a、b 为石墨电极。下列判断正确的是(A. a 为正极, b 为负极 B. a 极上有氢气放出 C. b 极上发生氧化反应 D. b 极附近溶液显碱性 3. 取一张用饱和 NaCl 溶液浸湿的 pH 试纸, 两根铅笔芯作电极, 接通直流电源, 一段时间后,发现 b 电极与试纸接触处出现一个双色同心圆,内圆为白色,外 圆呈浅红色。则下列说法错误的是()。 A. a 电极是阴极 B. b 电极与电源的正极相连接 C. 电解过程中, 水是氧化剂 D. a 电极附近溶液的 pH 变小 4.右图是电解 CuClo 溶液的装置, 其中 c、d 为石墨电极。下列判断正确的是 电流方向 () B. d 为阳极 A. a 为负极 C. c 电极上有氯气产生 D. d 电极上发生氧化反应 5.在原电池和电解池的电极上所发生的反应,同属氧化反应或同属还原反应的是()。 A. 原电池的正极和电解池的阳极所发生的反应 B. 原电池的正极和电解池的阴极所发生的反应 C. 原电池的负极和电解池的正极所发生的反应 D. 原电池的负极和电解池的阴极所发生的反应 7. 电解原理在化学工业中有广泛应用。右图表示一个电解池,装有电解液 a; X、Y 是两块 惰性电极,通过导线与直流电源相连。请回答以下问题: (1) 若电解液 a 是饱和 NaCl 溶液,实验开始时,同时在两边各滴入几滴酚酞试液, 则 该反应的化学方程式是_______。在 X 极附近观察到 的实验现象是 。检验 Y 电极反应产物的方法 (2) 如电解液 a 选用 CuCl₂ 溶液,则 X 电极可观察到的现象是 。该电解反应 的总反应方程式是 8. 关于如右图所示装置的叙述,正确的是()

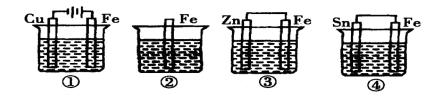

A. 铜是阳极,铜片上有气泡产生


B. 铜片质量逐渐减少

- C. 电流从锌片经导线流向铜片
- D. 氢离子在铜片表面被还原
- 9. 右图是电解 CuCl₂ 溶液的装置,其中 c、d 为石墨电极。则下列判断正确的是()
 - A. a 为负极、b 为正极
 - B. a 为阳极、b 为阴极
 - C. 电解过程中, d 电极质量增加
 - D. 电解过程中, 氯离子浓度不变
- 10. 图示方式插入同浓度的稀硫酸中一段时间,以下 叙述正确的是()
 - A. 两烧杯中铜片表面均无气泡产生
 - B. 甲中铜片是正极, 乙中铜片是负极
 - C. 两烧杯中溶液的 pH 均增大
 - D. 产生气泡的速度甲比乙慢
- 11. 某一学生想制作一种家用环保型消毒液发生器,用石墨作电极电解饱和 NaCl 溶液,通电时,为使 Cl₂ 被完全吸收制得有较强杀菌能力的消毒液,设计了 如图所示装置,则电源电极名称和消毒液的有效成分判断正确的是()
 - A. X 为正极, Y 为负极; HClO
- B. X 为负极, Y 为正极; NaClO
- C. X为阳极,Y为阴极;NaClO
- D. X为阴极,Y为阳极;HClO
- 12. 某学生设计了一个"黑笔写红字"的趣味实验。滤纸先用氯化钠、无色酚 酞的混合液浸湿,然后平铺在一块铂片上,接通电源后,用铅笔在滤纸 上写字,会出现红色字迹。据此,下列叙述正确的是()
- 祝你成功 自片 遠纸 铅笔

电源

- A. 铅笔端作阳极,发生还原反应
- B. 铂片端作阴极, 发生氧化反应
- C. 铅笔端有少量的氯气产生
- D. a 点是负极, b 点是正极
- 13. 取一张用饱和 NaCl 溶液浸湿的 pH 试纸,两根铅笔芯作电极,接通直流电源,一段时间后,发现电极 a 与试纸接触处出现一个双色同心圆,内圆为白色,外圈呈浅红色。则下列说法错误的是()
 - A. b 电极是阴极
 - B. a 电极与电源的正极相连接
 - C. 电解过程中, 水是氧化剂



D. b 电极附近溶液的 pH 变小

14. 下图各容器中盛有海水,铁在其中被腐蚀时由快到慢的顺序是()

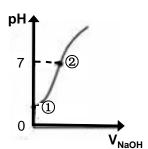
A. 4>2>1>3 B. 1>4>2>3 C. 4>2>3>1 D. 3>2>4>1

第18讲 电解质溶液综合练习

概念(电解质、非电解质、强电解质、弱电解质、电离、导电性)

1.	下列属于电解质的是
	A. 食盐水 B. 乙酸 C. 钠 D. 乙醇
2.	高铁酸钠(Na_2FeO_4)是一种正盐,可用作高效水处理剂,其电离方程式为
•	电离平衡(弱电解质)
1,	能证明乙酸是弱酸的实验事实是
	A.常温下 0.1 mol/L CH₃COONa 溶液的 pH 大于 7
	B.CH ₃ COOH 溶液与 Zn 反应放出 H ₂
	C.CH₃COOH 溶液与 Na₂CO₃ 反应生成 CO₂
	D.0.1mol/L CH₃COOH 溶液可使紫色石蕊变红
2.	请你设计一个能证明一水合氨是弱电解质的方案。
•	。 水的电离平衡
1.	25℃时,(NH ₄) ₂ SO ₄ 溶液显酸性,是因为
	A. NH ₄ ⁺ 电离出了 H ⁺ B. NH ₄ ⁺ 与水反应生成 H ⁺
	C. SO_4^{2-} 结合水电离的 H^+ D. SO_4^{2-} 抑制水电离
2,	下列四种微粒中,能使水电离出来的氢离子浓度等于 10 ⁻¹⁰ mol/L 的是
	A. CH ₃ COO- B. Al ³⁺ C. H ⁺ D. K ⁺ 对水的电离不产生影响的是
4.	A. KCl B. FeSO ₄ C. CH ₃ COONa D. H ₂ SO ₄ 常温下,下列化肥的水溶液 pH>7 的是
	A. K ₂ SO ₄ B. K ₂ CO ₃ C. NH ₄ Cl D. NH ₄ NO ₃
5、	84 消毒液(主要成分是次氯酸钠)呈性,原因(用离子方程式表示)
6.	Na ₂ S 溶液中,水的电离程度会 (填"增大""减小"或"不变"); 微热该溶液,p 会 (填"增大""减小"或"不变")。

● 溶液中离子浓度


以氯化铵为例书写:

- 1. 在 CH₃COONa 溶液中离子浓度最大的是
- A. H^+ B. OH^- C. CH_3COO^- D. Na^+
- 2. Na₂S 溶液中各离子浓度由大到小的顺序为: 。
- 3、常温下向 25mL 含 HCl 0.01mol 的溶液中通入氨气。当通入氨气使所得溶液的 pH=7, 此 时溶液中各离子浓度关系是。
- 4、相同条件下, 0.1 mol/L NH₄Fe(SO₄)₂ 中 c(Fe³⁺)_____0.1 mol/L FeCl₃ 中 c(Fe³⁺)。 (填"="、"<"或">")
- 5. 在氯水中,下列关系正确的是____(选填编号)。
 - a. $c(H^+) = c(ClO^-) + c(Cl^-)$
- b. $c(H^+) = c(ClO^-) + c(Cl^-) + c(OH^-)$

c. $c(HClO) < c(Cl^{-})$

- d. $c(Cl^{-}) < c(OH^{-})$
- 6. pH=11 的 NaOH 溶液和 pH=3 的醋酸溶液以等体积混合后,所得溶液中 $c(Na^+)$ 、 $c(CHCOO^-)$ 的正确关系是

 - A. $c(Na^+) > c(CHCOO^-)$ B. $c(Na^+) = c(CHCOO^-)$
 - $C. c(Na^+) < c(CHCOO^-)$ D. 不能确定
- 7. 常温下, 向饱和氯水中逐滴滴入 0.1 mol/L 的氢氧化钠溶液, pH 变化如下图所示,下列有关叙述正确的是

- A. ①处所示溶液中存在的电离平衡不止一个
- B. 由①到②的过程中,溶液由酸性逐渐变为碱性
- C. 由①到②的过程中,水的电离程度逐渐减弱
- D. ②处所示溶液中: $c(Na^+) = c(Cl^-) + c(ClO^-)$
- 8. 测得某 pH=2 的溶液中有关数据如下:

离子	Na ⁺	Fe^{3+}	?	NO_3^-	SO ₄ ²⁻
浓度 (mol/L)	2.0×10 ⁻²	1.4×10 ⁻²	?	2.0×10 ⁻²	2.4×10 ⁻²

则该溶液中还可能大量存在的一种离子是

- A. Fe²⁺
- B. Al³⁺
- C. Cl-
- D. CO₃²-

离子方程式

- 1. 盐酸和碳酸氢钙溶液反应的离子方程式正确的是
 - A. $H^+ + HCO_3^- \rightarrow CO_2 \uparrow + H_2O$

- B. $2H^+ + CO_3^2 \rightarrow CO_2\uparrow + H_2O$
- C. $H^+ + Ca(HCO_3)_2 \rightarrow Ca^{2+} + 2CO_2 \uparrow + H_2O$
- D. $2 \text{ H}^+ + \text{Ca}(\text{HCO}_3)_2 \rightarrow \text{Ca}^{2+} + 2 \text{ CO}_2 \uparrow + 2 \text{H}_2\text{O}$
- 2.次氯酸钙溶液与过量二氧化碳反应的离子方程式正确的是
 - A. $Ca^{2+} + 2ClO^{-} + H_2O + CO_2 \rightarrow CaCO_3 \downarrow + 2HClO$
 - B. $ClO^-+CO_2+H_2O\rightarrow HClO+HCO_3^-$
 - C. $2C10^{-}+CO_{2}+H_{2}O\rightarrow 2HC1O+CO_{3}^{2-}$
 - D. $2CIO^{-}+CO_{2}+2H_{2}O\rightarrow 2HCIO+2HCO_{3}^{-}$
- 3. 下列是常见离子检验的离子方程式,其中错误的是
 - $A. \hspace{0.2cm} Fe^{3+} \colon \hspace{0.2cm} Fe^{3+} + 3SCN^{-} \rightarrow Fe(SCN)_{3} \downarrow \hspace{1.5cm} B. \hspace{0.2cm} SO_{4}^{2-} \colon \hspace{0.2cm} Ba^{2+} + SO_{4}^{2-} \rightarrow BaSO_{4} \downarrow$

- C. Cl⁻: $Ag^++Cl^-\rightarrow AgCl\downarrow$ D. NH_4^+ : $NH_4^++OH^-\stackrel{\triangle}{\longrightarrow} NH_3\uparrow + H_2O$

● 离子共存

- 1. 下列各组中的离子,能在溶液中大量共存的是
 - A. K^{+} , H^{+} , SO_4^{2-} , AlO_2^{-}
- B. H^{+}_{3} , Fe^{2+}_{3} , $NO_{3}^{-}_{3}$, Cl^{-}_{3}
- C. Mg²⁺, Na⁺, Cl⁻, SO₄²⁻
- D. Na⁺、K⁺、OH⁻、HCO₃⁻
- 2. 下列离子在溶液中能共存,加 OH⁻有沉淀析出,加 H⁺能放出气体的是
 - A. Na⁺, Cu²⁺, Cl⁻, $SO_4^{2^-}$
- B. Ba^{2+} , K^+ , Cl^- , NO_3^-
- C. Ba^{2+} , NH_4^+ , CO_3^{2-} , NO_3^- D. Na^+ , Ca^{2+} , Cl^- , HCO_3^-
- 3. 某溶液中可能含有 K+、Ba2+、Cl、SO32-。取样,用 pH 试纸测试,溶液显弱碱性。未确 定的离子是
 - A. K⁺
- B. Ba²⁺ C. Cl⁻
- D. SO₃²-
- 4. 已知某溶液中只可能含有 Cl^- 、 CO_3^{2-} 、 Na^+ 、 NH_4^+ 中的几种(忽略水的电离),进行如下 实验:取样,加入足量盐酸,有气泡产生,再加入 AgNO3 溶液,有白色沉淀生成; 另取样, 加入足量 NaOH 溶液,微热,产生的气体是湿润的红色石蕊试纸变蓝。下列判断正确的是
 - A. 一定不含 CI^一

- B. 一定不含 Na⁺
- C. 一定含有 Cl-、CO₃2-
- D. 一定含有 CO₃²一、NH₄+