第1讲

- 1. B. 2. D. 3. A. 4. C. 5. 略 6、A. 7、D. 8、B.
- 9、(1) 当杠杆平衡时,动力臂大于阻力臂,可以省力;(2) 当杠杆平衡时,在杠杆的阻力和阻力臂不变,动力臂越大,动力越小.
- 10. (1) 在阻力与阻力臂一定的情况下,由杠杆平衡条件可知,

动力臂越大, F。竖直向上时 F。的力臂最大, 力 F。最小,

由题意可知, OA: AB=1: 2, 则 OA: OB=1: 3,

由杠杆平衡条件得: F,OA=F,OB,

则: $F_2 = F_1 OA / OB = 12N \times 1 / 3 = 4N$;

(2) L₂=F₁OA/F₂= OA×6N /4N =1.5 OA; F₂竖直向下作用在杠杆的中点。 11、50 牛顿

第2讲

- 1. 大于、大于、等于、等于。 2. 5、1。 3. 不可能、120 牛。 4. C. 5. B.
- 6. (1) G=2F=2×250 牛 (2) S=2×1.5米=3米 7. 略
- 8. (1) 使用动滑轮竖直向上匀速提起重物时可以省一半力,但不改变用力方向。
- (2) 使用动滑轮竖直向上匀速提起重物时,绳自由端移动距离为重物移动距离的2倍。
- 9. ①可以省力,不能改变用力方向;②0.2;③拉力方向不同;④使用动滑轮匀速提起同一重物,可以省力,测力计与竖直方向夹角越大,拉力也越大.

第3讲

- 1. C. 2. A. 3. A. 4. B. 5. C. 6. B. 7.1500; 75; 0.
- 8. 做功快慢; 做功越快; 每秒所做的功是 75 焦。
- 9. 30, 改变用力方向。15, 6。 10.3; 6; 6。 11. 减小; 势能; 动能。
- 12. 钢球从斜面上由静止滚下到达底部时 Va>Vb。 小木块移动的距离长短。

质量相同时,小球的速度越大,动能越大。 速度相同时,小球的质量越大,动能越大。

- 13. (1) 1、4、7 (或2、5、8, 或3、6、9)
- (2) 在小车运动速度相同的情况下,质量越大,小车的动能也越大.
- (3)(a) 当小车质量与速度平方的乘积相同时,小车具有的动能相同.
- (b) 小车质量与速度平方的乘积越大, 小车具有的动能越大.

第4讲

1.不一样,左手暖,右手冷;不可靠;温度计。2.冷热程度;摄氏度; \mathbb{C} ; 1 标准大气压;冰水;水沸腾;100;1。3.热胀冷缩;水银;酒精;摄氏温标。4.37 \mathbb{C} ; 37 摄氏度。5.测量范围;最小分度值。6.-20 \mathbb{C} -100 \mathbb{C} ; 1 \mathbb{C} ; 25 \mathbb{C} ; 35-42 \mathbb{C} ; 0.1 \mathbb{C} ; 37.5 \mathbb{C} 。 7.玻璃泡;玻璃管。8.A。9.C。10.A。11.A。12.D。13.C。14.D。15.C。16.D。17.C。18.(1)酒精:酒精的凝固点比南极的最低温度低;(2) 水银;水银的沸点比水的沸点高。

第5讲

1.B。2.扩散,无规则。3.D。4.B。5.D。6.A。7.D。8.盐分子在不停地做无规则运动。分子在不停地做无规则运动;温度越高,分子运动就越快。9.小;间隙;无规则。10.D。11.C。12。C。13.D。

第7讲

1.B 2.A 3.C 4.D 5.D 6.D 7.D 8.C 9.B 10.D 11.B 12.1.68*107 13.2.1*106 14.1.8

第8讲

1.C 2.B 3.D 4.D 5.C 6.C 7.B 8.D 9A.D 10.D 11.B 12.D 13.D 14.A 15.A 16.A 17.C 18.C

第9讲

八年级物理期中复习卷参考答案

- 1 . B 2. C 3. C 4. D 5. D 6.A 7. D 8.B 9、液体热胀冷缩 A 35-42 10、1:4 费距离 15 11、向下 变大 12、4 省力 变大 13、费力 距离 14、40 减少 60 15、20 0.05 10 不变 16、小于 小于 等于 等于 17、重力势 50 在1秒钟的时间内做功50焦 18, 6:5 4:3 19、(1) 质量相同的物体,速度越大,则具有的动能越大; (2) 速度相同的物体,质量越大,则具有的动能越大。 三、略 24、解: (1) W=Pt=80×1000 瓦×6×60 秒=2.88×10⁷ 焦 3分 (2) f=F=W/s=2.88×10⁷焦/5000米=5760牛 3分 25、解: (1) f=2F=2×40 牛=80 牛 1分 (2) v_s=S/t=1 米/4 秒=0.25 米/秒 2分 $v_{33}=2 v_{4}=2\times0.25 \text{ **}/秒=0.5 \text{ **}/秒$ 1分 (3) P=W/t=F×v=40 牛×0.5 米/秒=20 瓦(合理均给分) 3分 26、解: (1) : $F_1 \times L_1 = F_2 \times L_2$ 1分 $G_1 \times V_1 t = G_2 \times V_2 t$ 1分 ∴ $v_1/v_2 = G_2/G_1 = 500 + 400 = 5/4$ 2分 (2) G₁ =400 牛+20 牛=420 牛 1分 $: G_1 \times V_1 t = G_2 \times V_2 t$ \therefore $G_1'/G_2' = V_2/V_1$ 1分 420 牛/ G₂ '=4/5 ∴ G₂ =525 牛 $\triangle G = G_2 - G = 525 + 500 + 255 + 6$ 四、 实验题(共18分) 27, 22 -8 30 (3分) 28、 气体热胀冷缩, B (2分) 29、(1) 中点 消除杠杆自身重力对实验的影响 右(3分)
- (2) 略(1分) (3) 当动力和阻力使杠杆的转动效果相反时 (1分)
- 30、B(2分)
- 31、(1)质量相同的物体,高度越高,所具有的重力势能越大;(1分)
 - (2) 高度相同的物体,质量越大,所具有的重力势能也越大。(1分)
- 32、(1) 1与4(或2与5与7或3与6与8)(1分)
- (2) 当电动机匀速提起重物,速度相同时,电动机的提力越大,电动机做功越快。(1分)
- (3)(a) 当电动机匀速提起重物, 所用的提力与速度的乘积相同时, 电动机做功快慢相同; (1分)

(b) 当电动机匀速提起重物, 所用的提力与速度的乘积越大时, 电动机做功越快。(1分)

第 10 讲

1.A 2.C3.A 4. 加热时间 相同质量的同种物质升高温度越高吸收热量越多相同质量的不同物质升高相同温度吸收热量不同 5.在相等的时间内吸收相同的热量 相同质量的不同物质吸收相等的热量,升高的温度不同 6.不同,

质量相等的同种物质放出热量与降低温度成正比 同种物质降低相同的温度,质量越大放出的热量越多 同种物质放出热量与质量降低温度的乘积的比值是定值

第11讲

1.D 2.D 3.C 4.C 5.C 6.B 7.A

8.增大,增大 9.热传递 做功 10.增加 ,体积,大于 11.做功、热传递、12.C13.C,DACB 14.做功,机械,内 15.压缩,做功

第13讲

1, A2, A 3, C4, D5 B6, B

7、单位体积的质量: 0.55: 不变 8、千克每立方米: 2.7: 小

9、
$$\rho = \frac{m}{v} = \frac{135 \, f \bar{g}}{0.05 \, \text{%}^3} = 2.7 \times 10^3$$
 千克/米³

10、1×10⁻² 米 ³; 2.7 千克

11、质量与体积成正比;过原点的倾斜直线;个定值;倾斜程度不同;不同物质,质量与体积的比值不同;应该认真观察并仔细读数,实事求是地;错误,记录,

尊重实验数据, 若发现数据有误, 需重新实验获取数据。

预设的体积大小无法体现"在体积相同的情况下,不同物质质量不同"。

12、相同质量的米酒筒比酱油筒大(或相同质量的不同液体体积不同)。

同种液体质量随体积增大而增大。表一或表二的最后两列可知,同种液体,液体质量的增加量与它体积的增加量的比值是个定值; 表一和表二的最后两列可知,不同液体,液体质量的增加量与它体积的增加量的比值是不同的。20;

第14讲

【知识要点】

1、C 2、B 3、D 4、C 5、B 6、B 7、C , A 。8、 C , A 。9、A , C 。
10、不是用纯铅制的 11、0.5×10⁻³ 米 ³ 8.3 千克 12、13.6×10³ 千克/米 ³

【拓展提高】

1、A 2、C 3、B 4、C 5、C 6、(1)0. 5×10^{-3} 张 3 (2) 0.9×10^{3} 千克/米 3

7. ① 0. 3×10⁻³ 米 3② 0. 7 千克③ 3. 5×10³ 千克/米 3

8. 同种物质,质量与体积成正比。

乙同学记录的质量不是水的质量,而是水和容器的总质量。

第15讲

1、 B 2、 C 3、B 4、10.5×10³,银。5、2.7×10³,铝。6、水银 。7. 34×10^3 千克 8、20 厘米 ³

 8.8×10^3 千克/米 ³ 9、1、2、4、3; 71.4,14 厘米 ³,5.1。多次测量,求平均值,减小误差。

10、正确,错误。 11、相同,多种,寻求普遍规律; m/V_3-V_2 。 12. A、B、D、; C、E、F; 多次测量,求平均值,减小误差。 1、某 73.420 0.84×10³ 偏小 2、铁块。游码。水平。左。5、D 70; 2.71; 偏小

第16讲

八年级物理期末复习一答案

评分参考

		计分多传					
一、选择题	1. C 2. C	3. A	4. D	5. B			
(毎题2分)	6. D 7. I	8. C	9. B				
	10. 质量为 1 千克	瓦的水,温度升高	1℃时;	不变;	大;	水	
	11. 扩散; "	"b";					
二、填空题	玻璃泡与容器	底接触; 读	数时温度计	拿离了被测剂	夜体		
(每空 1 分,	12. 单位体积的质	t量; 特性;	无关;	能			
最后一空	13. 重力势能;		C)			
	14. 40;	160;	40				
2分,	15. 热传递;	等效; 相同	司 ;	=			
共 31 分)	16. 定; 改	(变用力方向;	Α;	等于;	等于		
	17. 做功;	内能转化为机	1.械能;				
	物体对外做功时,内能越大,转化的机械能就越大。						
三、作图题	18. 力臂 1 分,	力2分。					
	19. 画对一个 2 /	分,都对得3分。					
(共9分)	20. 位置找对 1 分	分,涂对 2 分。					
	21. (1) Δt=70°C	C-20°C=50°C				1分	
	(2)Qg=c m∆t=0.39×10³焦/(千克・℃)×0.2 千克 ×50℃						
	=3.9×10 ³ 焦 (公式 1 分、代入 1 分、结果 1 分)						
四、计算题	22. $F_{\rm B} = G = 100$) 牛				1分	
	$F \times I_{A} = F$	$I_{\mathrm{B}} \times I_{\mathrm{B}}$				1分	
(共 22 分	F×0.4 米=100 牛×0.6 米					1分	
4+5+6+7	F=150 牛				1分		
=22 分)						1分	
	23.						
		0 牛×2 米=3000					
	(2) p=W/t=3000 焦/1 秒=3000 瓦 (公式 1 分、代)						
	(3) 0			(结	果正确得	1分)	

	24. (1) $m_{\frac{2}{4}} = \rho_{\frac{1}{4}} V_{\frac{2}{4}} = 1 \times 10^{3}$ 千克/米 $^{3} \times 2 \times 10^{-4}$ 米 $^{3} = 0.2$ 千克				
	(公式1分、代入1分、结果1分)				
	(2) m _金 =1.2 千克+0.2 千克−0.6 千克=0.8 千克 1 分				
	$V_{\pm} = V_{\text{溢水}} = 2 \times 10^{-4} \text{*}^{-3}$ 1分				
	(3) $\rho_{\pm} = m_{\pm}/V_{\pm} = 0.8 + \bar{p}/2 \times 10^{-4} + 3 = 4 \times 10^{3} + \bar{p}/2 + 3 = 4 \times 10^{3} + 4 \times 10^{3} +$				
	(公式 1 分、代入、结果 1 分)				
五、实验题 (共 20 分)	25. 是; 钩码在杠杆上的位置或增减钩码的个数; 便于直接在杠杆上读出力臂值; 小明; 弹性势; 动 26. 实验目的; 量筒; 同种液体,质量与体积成正比; 相同体积的不同种液体,质量不同。 27. ① m_2-m_1 (m_1-m_2)/V ② 第 1 步骤中,调节平衡螺母前游码应该移到左端零刻度处。 ③ 小李。 烧杯中的食用油倒入量筒时,会有一部分油倒不干净,测出的食用油 体积偏小,使得测得的密度偏大。 28. 吸收的热量与升高的温度成正比;				
	1、5、7(或2、8,或3、9); 质量与升高温度的乘积相等时; 100克酒精 (答案合理均可) 5、10、15 (答案合理均可) 共 1分				

第17讲

八年级物理期末复习二答案

一、选择题	1. C	2. B	3. B	4. C	5. C		
(每题2分)	6. B	7. B	8. A	9. D	10. D		
	(除 22、23 空每空 2 分,其余每空 1 分)						
	11. 焦每千克摄氏度。 质量为1千克的煤油每升高(降低)1℃吸收(放						
二、填空题	二、填空题 出)的热量为 2.1×10 ³ 焦。 2.1×10 ³ 。 2.1×10 ⁵ 12. 0.027。 27。 0.03。						
	13. 小	于。 变为	大。 4 G	/3。			

	14.b。 相互转化。 a。 相互转移。							
	15. 12: 1. 0.							
	16. 乙。 增大 。 不变。							
	17. 大于。 不能。							
	18. (22) 损失的机械能的大小ΔE 较大;							
	(23) 同一弹性小球从相同高度自由下落,碰撞不同材料的地							
	机械能的大小ΔE 不同。							
三、作图题	19. 位置找对 1 分,涂对 2 分。							
	20. 动力 F_1 向下 1 分,垂直 1 分,阻力力臂 1 分。							
	21. 画对一个 2 分,都对得 3 分。							
	$22. c = Q_{\text{gg}}/(m\Delta t)$	3 分						
	=7.2×10 ⁴ 焦/(2 千克×40℃)	2分						
	=0.9×10³焦/(千克·℃)	2分						
	23. ① V=10 厘米/秒=0.1 米/秒	1分						
	p = Fv	2分						
	=10 华 ×0.1 米/秒							
	= 1瓦							
四、计算题	② $W_{\dot{\text{1}}} = W_{\text{H}} = 400$ 焦							
	$S=W_{1/2}/F=400$ 焦/10 牛=40 米							
(26 分)	t=S /v=40 米/(0.1 米/秒)=400 秒							
	24. ① ρ = Δ m/ Δ V=2 克/2 厘米 ³ =1 克/厘米 ³							
	② $m_{i\kappa}$ 1= ρ V_1 = 1 克/厘米 $^3 \times 5.8$ 厘米 3 = 5.8 克							
	$m_0=m_1-m_{_{\bar{w}}1}=10.8$ 克—5.8 克 = 5 克							
	③ m_{*3} = ρ V_3 = 1 克/厘米 3 × 10 厘米 3 =10 克							
	m' = m _{液 3} + m ₀ =10 克+5 克=15 克	2分						
	(每空1分)							
	 25.钩码 右 两液体体积相同 加热时间							
五、实验题								
	质量/体积(千克/米 ³)							
	27. 重力势能 动能							
	Θ 越大,小球到达底端时的速度为 v 越大。							
	大美 无美							

第四列与第五列 速度的平方

28. 不能改变用力的大小,可以改变用力方向。

4、5和6

使用同一动滑轮匀速提升同一重物时,拉力与竖直方向夹角越大,拉力越大。

 $F = (G_1 + G_2) / 2$