高二数学春季班精炼题集

目录

第1讲	空间点、线、面的位置关系	2
第2讲	空间中的平行关系	3
第3讲	空间中的垂直关系	4
第4讲	空间角及计算	5
第5讲	空间距离及其计算、折叠问题	6
第6讲	简单几何体与旋转体	8
第8讲	三视图	9
第9讲	几何体表面积和体积	11
第 10 讲	空间几何体综合复习	15
第11讲	空间向量及其坐标表示	20
第 12 讲	空间向量在立体几何度量中的应用	24
第13讲	线性规划	28
第 14 讲	直线和圆锥曲线的参数方程	32
第 15 节	阶段测试	36
第 16 节	二项式定理	41
第 17 讲	期末复习	44

第1讲 空间点、线、面的位置关系

☆巩固练习☆

- 1.(2011·**浙江卷**)若直线 *l* 不平行于平面α,且 *l* α ,则()
- A. α 内的所有直线与l异面
- B. α 内不存在与l平行的直线
- C. a 内存在唯一的直线与 l 平行
- D. α 内的直线与 l 都相交

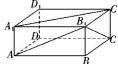
 $2.(2012 \cdot \mathbf{上海卷})$ 已知空间三条直线 l, m, n.若 l = m 异面,且 l = n 异面,则()

- A. *m*与 *n*异面
- B. *m* 与 *n* 相交
- C. m与n平行
- D. m与n异面、相交、平行均有可能

3.已知 E、F、G、H 是空间内四个点,条件甲: E, F, G, H 四点不共面,条件乙: 直线 EF 和 GH 不相交,则甲是乙成立的()

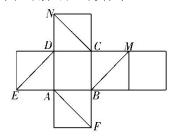
- A. 充分不必要条件 B. 必要不充分条件
- C. 充要条件
- D. 既不充分也不必要条件

4.若直线 l 上有两点到平面 α 的距离相等,则直线 l 与平面 α 的关系是



5.如图, $ABCD-A_1B_1C_1D_1$ 是长方体,其中 $AA_1=a$, $\angle BAB_1=\angle B_1A_1C_1=30$ °,则AB与 A_1C_1 所成的角为_____, AA_1 与 B_1C 所成的角为_____.

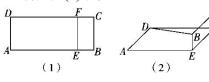
6.下图是正方体的平面展开图,则在原正方体中:



- ①*BM* 与 *DE* 平行:
- ②CN 与 BE 是异面直线;
- ③CN与BM成60°角;
- ④*DM* 与 *BN* 垂直.

其中真命题的序号是

7.有一矩形纸片 ABCD, AB=5, BC=2, $E \setminus F$ 分别是 $AB \setminus CD$ 上的点,且 BE=CF=1, 如图(1). 现在把纸片沿 EF 折成图(2)形状,且 $\angle CFD=90^\circ$.



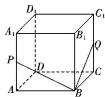
- (1)求 BD 的距离;
- (2)求证: AC、BD 交于一点且被该点平分.

第2讲 空间中的平行关系

☆巩固练习☆

1.经过平面 α 外两点,作与 α 平行的平面,则这样的平面可以作(

- A. 0 个
- B. 1个
- C. 0 个或 1 个 D. 1 个或无数个
 - 2.(2012·四川卷)下列命题正确的是(
- A. 若两条直线和同一个平面所成的角相等,则这两条直线平行
- B. 若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行
- C. 若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行
- D. 若两个平面都垂直于第三个平面,则这两个平面平行



3.在正方体 $ABCD-A_1B_1C_1D_1$ 中,P、Q 分别是棱 AA_1 、 CC_1 的中点,则过点 B、P、 Q 的截面是()

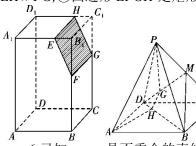
- A. 邻边不等的平行四边形
- B. 菱形但不是正方形
- C. 邻边不等的矩形
- D. 正方形 4.已知 m, n 是两条不同的直线, α , β 是两个不同的平面, 有下列四个 命题:
 - ①若 m//n, $n \subset \alpha$, 则 $m//\alpha$:
 - ②若 $m \perp n$, $m \perp \alpha$, $n \triangleleft \alpha$, 则 $n // \alpha$;
 - ③若 α \perp β , m \perp α , n \perp β , 则 m \perp n;
 - ④若 m, n 是异面直线, $m \subset \alpha$, $n \subset \beta$, $m // \beta$, 则 $n // \alpha$.

其中正确的命题有()

- A. (1)(2)
- B. (2)(3)
- C. (3)(4)
- D. (2)(4)

5.如图,若 Ω 是长方体 $ABCD-A_1B_1C_1D_1$ 被平面 EFGH 截去几何体 $EFGHB_1C_1$ 后得到 的几何体,其中 E 为线段 A_1B_1 上异于 B_1 的点, F 为线段 BB_1 上异于 B_1 的点,且 $EH//A_1D_1$, 则下列结论中不正确的是

①EH//FG;②四边形 EFGH 是矩形; ③ Ω 是棱柱; ④ Ω 是棱台.



6.已知 m、n 是不重合的直线, α 、 β 是不重合的平面,有下列命题:

- ①若 $m \subset \alpha$, $n // \alpha$, 则 m // n;
- ②m// α , m// β , 则 α // β ;
- ③若 $\alpha \cap \beta = n$, m//n, 则 $m//\alpha$ 且 $m//\beta$;
- ④若 $m \perp \alpha$, $m \perp \beta$, 则 $\alpha // \beta$.

其中正确命题的序号有

7. 如图所示,已知四边形 ABCD 是平行四边形,点 P 是平面 ABCD 外一点,M 是 PC

的中点, 在 DM 上取一点 G, 过 G 和 AP 作平面交平面 BDM 于 GH. 求证: AP//GH.

第3讲 空间中的垂直关系

☆巩固练习☆

 $1.(2012 \cdot \mathbf{安徽卷})$ 设平面 α 与平面 β 相交于直线 m, 直线 a 在平面 α 内, 直线 b 在平面 β 内, 且 $b \perp m$,则 " $\alpha \perp \beta$ " 是 " $a \perp b$ " 的()

- A. 充分不必要条件 B. 必要不充分条件
- C. 充要条件
- D. 即不充分也不必要条件

2.(2011·**东莞模拟**)若 l 为一条直线, a , β , γ 为三个互不重合的平面,给出下面三 个命题:

- ① $a \perp \gamma$, $\beta \perp \gamma \Rightarrow a \perp \beta$; ② $a \perp \gamma$, $\beta // \gamma \Rightarrow a \perp \beta$;
- 3l//a, $l \perp \beta \Rightarrow a \perp \beta$.

其中正确的命题有(

- A. 0 个
- B. 1个

)

- C. 2个
- D. 3 个

3.设 m, n 是平面 α 内的两条不同直线, l_1 , l_2 是平面 β 内两条相交直线,则 $\alpha \perp \beta$ 的一个 充分不必要条件是(

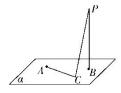
- A. $l_1 \perp m$, $l_1 \perp n$
- B. $m \perp l_1$, $m \perp l_2$
- C. $m \perp l_1$, $n \perp l_2$
- D. m//n, $l_1 \perp n$

4.(2011·**黄冈期末**)已知 m, n 是两条不同的直线, α , β 是两个不同的平面,给出下 列命题:

- ①若 $\alpha \perp \beta$, $m // \alpha$, 则 $m \perp \beta$;
- ②若 $m \perp \alpha$, $n \perp \beta$, 且 $m \perp n$, 则 $\alpha \perp \beta$;
- ③若 $m \perp \beta$, $m // \alpha$, 则 $\alpha \perp \beta$;
- ④若 $m//\alpha$, $n//\beta$, 且 m//n, 则 $\alpha//\beta$.

其中真命题的序号是(

- A. (1)(4)
- B. 23C. 24
- D. ①③

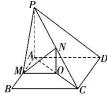


5.如图所示,定点 A 和 B 都在平面 α 内,定点 P∉ α ,PB \bot α ,C 是 α 内异于 A 和 B 的 动点,且 $PC \perp AC$,则BC 与 AC的位置关系是

6.已知 α , β 是两个不同的平面,m,n是平面 α 及 β 之外的两条不同直线,给出四个论 断:

 $\bigcirc m \perp n$; $\bigcirc \alpha \perp \beta$; $\bigcirc m \perp \beta$; $\bigcirc m \perp \alpha$.

以其中三个论断作为条件,余下的一个论断作为结论,写出你认为正确的一个命题:

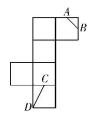


- 7.如图,四边形 ABCD 为矩形, PA上平面 ABCD, M、N 分别为 AB、PC 的中点.
- (1)证明: *AB* \(\textit{MN};
- (2)若平面 PDC 与平面 ABCD 成 45°角,连接 AC,取 AC 的中点 O,证明平面 MNO 上平面 PDC.

第4讲 空间角及计算

☆巩固练习☆

- 1.平面 α 的斜线与 α 所成的角为 30° ,则此斜线和 α 内所有不过斜足的直线中所成的角的最大值为()
 - A. 30° B. 60°
 - C. 90° D. 150°
- 2.在边长为 a 的正三角形 ABC 中, $AD \perp BC$ 于 D,沿 AD 折成二面角 B-AD-C 后, $BC=\frac{1}{2}a$,这时二面角 B-AD-C 的大小为()
 - A. 30° B. 45°
 - C. 60° D. 90°
- 3.四面体 ABCD 中,E、F 分别是 AC、BD 的中点,若 CD=2AB, $EF \perp AB$,则 EF 与 CD 所成的角等于()
 - A. 30° B. 45° C. 60° D. 90°

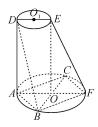


4.如右图所示,是一个正方体的表面展开图, $A \times B \times C$ 均为棱的中点,D 是顶点,则

在正方体中, 异面直线 AB 和 CD 的夹角的余弦值为()

$$A.\frac{\sqrt{2}}{5}$$
 $B.\frac{\sqrt{3}}{5}$ $C.\frac{\sqrt{10}}{5}$ $D.\frac{\sqrt{5}}{5}$

5.二面角 α -l- β 的平面角为 120°, A、B \in l, AC \subset α , BD \subset β , AC \bot l , BD \bot l , BD \bot l , AB = AC = BD = 1 , D CD 的长为



6.把边长为 1 的正方形 ABCD 沿对角线 BD 折起,形成三棱锥 C-ABD,其正视图与俯视图如图所示,则侧视图的面积为______.

7.如图所示,AF、DE 分别是 $\odot O$ 、 $\odot O_1$ 的直径,AD 与两圆所在的平面均垂直,AD =8,BC 是 $\odot O$ 的直径,AB=AC=6, $OE/\!\!/AD$.

- (1)求二面角 *B—AD—F* 的大小;
- (2)求直线 BD 与 EF 所成的角的余弦值.

第5讲 空间距离及其计算、折叠问题

☆巩固练习☆

1.在长方体 ABCD— $A_1B_1C_1D_1$ 中,若 AB=BC=a, $AA_1=2a$,则点 A 到直线 A_1C 的距离为()

A.
$$\frac{2\sqrt{6}}{3}a$$
 B. $\frac{3\sqrt{6}}{2}a$ C. $\frac{2\sqrt{3}}{3}a$ D. $\frac{\sqrt{6}}{3}a$

2.(2012·**大纲卷**)已知正四棱柱 $ABCD-A_1B_1C_1D_1$ 中,AB=2, $CC_1=2\sqrt{2}$,E 为 CC_1 的中点,则直线 AC_1 与平面 BED 的距离为()

A. 2 B.
$$\sqrt{3}$$
 C. $\sqrt{2}$ D. 1

3.将一内角为 60° , 边长为 a 的菱形 ABCD 沿较短的对角线 BD 折成 90° 的二面角后,A、C 两点间的距离为()

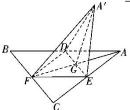
$$A.\frac{\sqrt{3}}{2}a$$
 $B.\frac{\sqrt{2}}{2}a$

$$C.\frac{a}{2}$$
 $D.\frac{\sqrt{6}}{2}a$

4.在空间直角坐标系 Oxyz 中,平面 OAB 的一个法向量 $\mathbf{n} = (2, -2, 1)$,已知 P(-1, 3, 2),则点 P 到平面 OAB 的距离 d 等于()

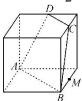
- A. 4 B. 2
- C. 3 D. 1

 $5.(2012\cdot$ **辽宁卷**)已知正三棱锥 P-ABC,点 P,A,B,C 都在半径为 $\sqrt{3}$ 的球面上,若 PA,PB,PC 两两互相垂直,则球心到截面 ABC 的距离为



6.如图,边长为 a 的正 $\triangle ABC$ 的中线 AF 与中位线 DE 相交于 G,已知 $\triangle A'ED$ 是 $\triangle AED$ 绕 DE 旋转过程中的一个图形,现给出下列命题,其中正确的命题有_______. (只需填上正确命题的序号)

- ①动点 A'在平面 ABC 上的射影落在线段 AF 上;
- ②三棱锥 A'-FED 的体积有最大值;
- ③恒有平面 A'GF L 平面 BCED;
- ④异面直线 A'E 与 BD 不可能互相垂直;
- ⑤异面直线 FE 与 A'D 所成角的取值范围是 $(0, \frac{\pi}{2}]$.



7.如图,正方体的棱长为 1,C、D、M分别为三条棱的中点,A、B 是顶点,求点 M 到截面 ABCD 的距离.

第6讲 简单几何体与旋转体

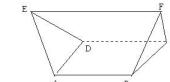
例 1. (1) 正三棱锥 S-ABC 的侧棱 SA,SB,SC 两两垂直,体积为V, A',B',C' 分别是

SA,SB,SC 上的点,且 $SA' = \frac{1}{2}SA,SB' = \frac{1}{3}SB,SC' = \frac{1}{4}SC$,则三棱锥 S-A'B'C' 的体积

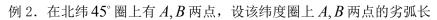
为

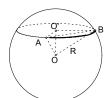
- (A) $\frac{1}{9}V$ (B) $\frac{1}{12}V$ (C) $\frac{1}{24}V$ (D) $\frac{1}{72}V$

(2) 如图,在多面体 ABCDEF中,已知 ABCD 是边长为1 的正方形,且 $\triangle ADE$ 、 $\triangle BCF$ 均为正三角形, EF // AB, EF = 2,则该多面体的体积为(



- (A) $\frac{\sqrt{2}}{3}$ (B) $\frac{\sqrt{3}}{3}$ (C) $\frac{4}{3}$ (D) $\frac{3}{2}$

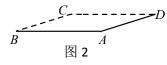




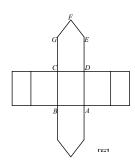
为 $\frac{\sqrt{2}}{4}\pi R$ (R为地球半径), 求A,B两点间的球面距离。

例 3. 图 1 是某储蓄罐的平面展开图,其中 $\angle GCD = \angle EDC = \angle F = 90^{\circ}$,且 AD = CD = DE = CG, FG = FE. 若将五边形 CDEFG 看成底面, AD 为高,则该储蓄罐 是一个直五棱柱。

(1) 图 2 为面 ABCD 的直观图,请以此为底面将该储蓄罐的直观图画完整;



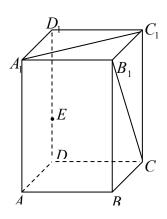
(2) 已知该储蓄罐的容积为 $V = 1250 \text{cm}^3$,求制作该储蓄罐所需材料的总 面积S (精确到整数位,材料厚度、接缝及投币口的面积忽略不计)。



例 4. 如图,在正四棱柱 $ABCD-A_1B_1C_1D_1$ 中, AB=4 , $AA_1=8$ 。

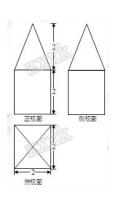
- (1) 求异面直线 $B_1C 与 A_1C_1$ 所成角的大小; (用反三角函数形式表示)
- (2) 若 E 是线段 DD_1 上(不包含线段的两端点)的一个动点,请提出一个与三棱锥体积有

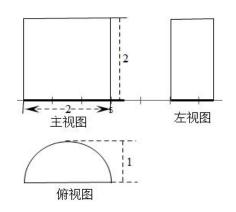
关的数学问题(注:三棱锥需以点 E 和已知正四棱柱八个顶点中的 三个为顶点构成); 并解答所提出的问题。



第8讲 三视图

- 1. 某几何体的三视图如图所示(单位: cm),则该几何体的体积是()
 - A. 8 cm^3
- B. 12 cm^3
- c. $\frac{32}{3}$ cm³ D. $\frac{40}{3}$ cm³



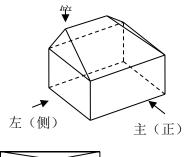


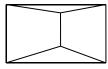
- 2. 已知底面边长为 1,侧棱长为 $\sqrt{2}$ 的正四棱柱的各顶点均在同一个球面上,则该球的体积 为()

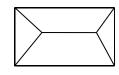
- B. 4π C. 2π
- 3. 一个几何体的三视图如图所示, 则该几何体的表面积为()

- A. 3π B. 4π C. $2\pi + 4$ D. $3\pi + 4$

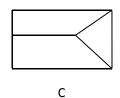
4. 一几何体的。直观图如右图,下列给出的四个俯视图中正确的是()

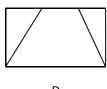






Α





D

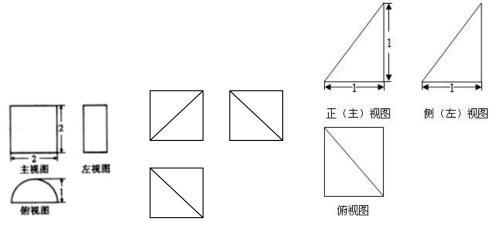
5. 一个几何体的三视图如图所示,则该几何体的表面积为()

A. 3π

B. .4π

c. $2\pi + 4$

D. $3\pi + 4$



6. 一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩 余部分体积的比值为(

- B. $\frac{1}{7}$ C. $\frac{1}{6}$ D. $\frac{1}{5}$

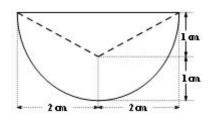
7. 某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()

- A. 1
- B. $\sqrt{2}$
- . C. $\sqrt{3}$

D. 2

8. 已知三.棱锥 D-ABC 中,AB=BC=1,AD=2, $BD=\sqrt{5}$, $AC=\sqrt{2}$, $BC\perp AD$, 则三棱锥的外接球的表面积为()

- A. $\sqrt{6}\pi$
- B. 6π C. 5π D. 8π
- 9. 某零件的正(主)视图与侧(左)视图均是如图所示的图形(实线组成半径为 2 cm 的 半圆,虚线是等腰三角形的两腰),俯视图是一个半径为 2 cm 的圆(包括圆心),则该零件 的体积是()



- A. $\frac{4}{3}\pi$ cm³

- B. $\frac{8}{3}\pi$ cm³ C. 4π cm³ D. $\frac{20}{3}\pi$ cm³
- 10. 正四面体的外接球和内切球的半径的关系是(

A.
$$R = \frac{7}{2}r^{B}$$
. $R = \frac{5}{2}r^{C}$. $R = 2r^{D}$. $R = 3r^{D}$

第9讲 几何体表面积和体积

- 一、选择题
- 1. 棱长为 2 的正四面体的表面积是()
- B. 4 C. $4\sqrt{3}$ D. 16
- 2. 一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是().

- (A) $\frac{1+2\pi}{2\pi}$ (B) $\frac{1+4\pi}{4\pi}$ (C) $\frac{1+2\pi}{\pi}$ (D) $\frac{1+4\pi}{2\pi}$
- 3. 在棱长为 1 的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去与 8 个顶点相关的8个三棱锥后,剩下的几何体的体积是(

- 4. 一个空间几何体的正视图和侧视图都是边长为1的正方形, 俯视图是一个直径为1的圆,那么这个几何体的全面积为 ()

 $A.\frac{3}{2}\pi$

B. 2π C. 3π D. 4π

5. 某几何体的三视图如图所示,它的体积为()

A. 72π

Β. 48π

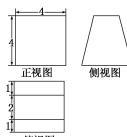
C. 30π

D. 24π

6. 设一个球的表面积为 S_1 ,它的内接正方体的表面积为 S_2 ,则 $\frac{S_1}{S_2}$ 的值等于(

 $A.\frac{2}{\pi}$ $B.\frac{6}{\pi}$ $C.\frac{\pi}{6}$ $D.\frac{\pi}{2}$

7. 一个空间几何体的三视图如图所示,则该几何体的表面积为(

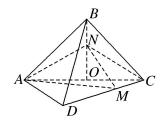


A. 48

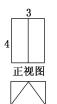
B. $32+8\sqrt{17}$

C. $48 + 8\sqrt{17}$

8. 已知正方形 ABCD 的边长为 $2\sqrt{2}$,将 $\triangle ABC$ 沿对角线 AC 折起,使平面 ABC \bot 平面 ACD, 得到如图所示的三棱锥 B-ACD.若 O 为 AC 边的中点,M,N 分别为线段 DC,BO 上的动 点(不包括端点),且 BN=CM.设 BN=x,则三棱锥 N-AMC 的体积 y=f(x)的函数图象大致 是(



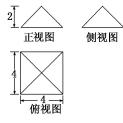
9. 如图是一个几何体的正视图、侧视图、俯视图,且正视图、侧视图都 是矩形,则该几何体的体积是(



- A. 24
- B. 12
- C. 8
- D. 4

10. 某四棱锥的三视图如图所示,该四棱锥的表面积是(

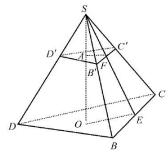
- A. 32
- B. $16+16\sqrt{2}$
- C. 48
- D. $16+32\sqrt{2}$



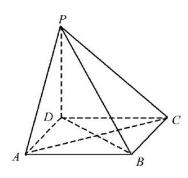
- 二、填空题
- 11. 一个直棱柱(侧棱垂直于底面的棱柱)的底面是菱形,对角线长分别是 6cm 和 8cm, 高是 5cm,则这个直棱柱的全面积是

12. 已知两个母线长相等的圆锥的侧面展开图恰能拼成一个圆,且它们的侧面积之比为 1:2,则它们的高之比为。
13. 已知三棱锥的三条侧棱两两互相垂直,且长度分别为 1cm, 2cm, 3cm, 则此棱锥的体积。
14. 矩形两邻边的长为 a 、 b ,当它分别绕边 a 、 b 旋转一周时,所形成的几何体的体积之比为。
15. 球面上有三点,其中任意两点间的球面距离都等于大圆周长的 $\frac{1}{6}$,经过这三点的小圆周长为 4π ,则这个球的表面积为。
16. 四面体 $ABCD$ 四个面的重心分别为 E 、 F 、 G 、 H ,则四面体 $EFGH$ 的表面积与四面体 $ABCD$ 的表面积的比值是。
17. 半径为 R 的半球,一正方体的四个顶点在半球的底面上,另四个顶点在半球的球面上,则该正方体的表面积是。
18. 如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是
19. 如图,已知正三棱柱 $ABC-A_1B_1C_1$ 的底面边长为 2 cm,高为 5 cm,则一质点自点 A 出发,沿着正三棱柱的侧面绕行两周到达点 A_1 的最短路线的长为cm.
三、解答题

20. 如图,一个棱锥 S-BCD 的侧面积是 Q,在高 SO 上取一点 A,使 $SA=\frac{1}{3}SO$,过点 A 作平行于底面的截面得一棱台,求这个棱台的侧面积.

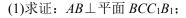


21. 如图,在四棱锥 P-ABCD 中,底面 ABCD 是正方形, 边长 AB=a,且 PD=a, $PA=PC=\sqrt{2}$ a,若在这个四棱锥内放 一个球,求球的最大半径.

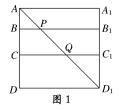


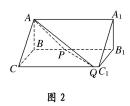
22. 如图 1 所示,在边长为 12 的正方形 ADD_1A_1 中,点 B、C 在线段 AD 上,且 AB=3,BC=4,作 $BB_1//AA_1$ 分别交 A_1D_1 、 AD_1 于点 B_1 、P,作 $CC_1//AA_1$ 分别交 A_1D_1 、 AD_1 于点

 C_1 、Q,将该正方形沿 BB_1 、 CC_1 折叠,使得 DD_1 与 AA_1 重合,构成如图 2 所示的三棱柱 $ABC-A_1B_1C_1$.



(2)求多面体 $A_1B_1C_1-APQ$ 的体积.





第10讲 空间几何体综合复习

一、选择题:

1、如果一个水平放置的图形的斜二测直观图是一个底面为 45°,腰和上底均为 1 的等腰梯 形,那么原平面图形的面积是(

- A. $2 + \sqrt{2}$ B. $\frac{1 + \sqrt{2}}{2}$ C. $\frac{2 + \sqrt{2}}{2}$
- D. $1 + \sqrt{2}$

2、半径为 R 的半圆卷成一个圆锥,则它的体积为(

A.
$$\frac{\sqrt{3}}{24}\pi R^3$$
 B. $\frac{\sqrt{3}}{8}\pi R^3$ C. $\frac{\sqrt{5}}{24}\pi R^3$ D. $\frac{\sqrt{5}}{8}\pi R^3$

3、一个棱柱是正四棱柱的条件是(

A、底面是正方形,有两个侧面是矩形 B、底面是正方形,有两个侧面垂直于底面 C、底面是菱形,且有一个顶点处的三条棱两两垂直 D、每个侧面都是全等矩形的四棱柱

4.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去8个三 棱锥后,剩下的几何体的体积是()

- A. $\frac{2}{3}$ B. $\frac{7}{6}$ C. $\frac{4}{5}$ D. $\frac{5}{6}$

5.长方体的一个顶点上三条棱长分别是3、4、5,且它的8个顶点都在同一球面上,则这个 球的表面积是

- A 25π
- B, 50π
- C、125*π* D、都不对

6.正方体的内切球和外接球的半径之比为(

- A. $\sqrt{3}:1$ B. $\sqrt{3}:2$ C. $2:\sqrt{3}$ D. $\sqrt{3}:3$

7.如图, 在△ABC中, AB=2,BC=1.5, ∠ABC=120°, 若使绕直线 BC 旋转一周,则所形成的几何 体的体积是

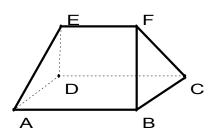
- A. $\frac{9}{2}\pi$ B. $\frac{7}{2}\pi$ C. $\frac{5}{2}\pi$ D. $\frac{3}{2}\pi$

8.如图:直三棱柱 $ABC - A_1B_1C_1$ 的体积为 V,点 $P \setminus Q$ 分别在侧棱 AA_1 和 CC_1 上, $AP=C_1Q$,则四 棱锥 B—APQC 的体积为

- A, $\frac{V}{2}$ B, $\frac{V}{3}$ C, $\frac{V}{4}$ D, $\frac{V}{5}$

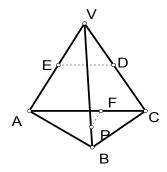
9、如图,在多面体 ABCDEF 中,已知平面 ABCD 是边长 为 3 的正方形,EF // AB, $EF = \frac{3}{2}$,且 EF 与平面 ABCD 的 距离为 2,则该多面体的体积为(

- A, $\frac{9}{2}$ B, 5 C, 6 D, $\frac{15}{2}$



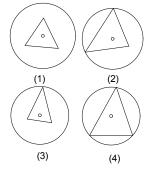
10、如右图所示,正三棱锥 V-ABC中, D, E, F分别是 VC, VA,AC 的中点, P为VB上任意一点,则直线 DE与 PF所成 的角的大小是(

A $\frac{\pi}{6}$ B $\frac{\pi}{2}$ C $\frac{\pi}{3}$ D 随 P 点的变化而变化。



11、已知, 棱长都相等的正三棱锥内接于一个球, 某学生画出四 个过球心的平面截球与正三棱锥所得的图形,如下图所示,则

A、以上四个图形都是正确的。 B、只有(2)(4)是正确的; C、只有(4)是错误的; D、只有(1)(2)是正确的。



12.正三棱锥的底面边长为 2,侧面均为直角三角形,则此棱锥的体 积 ()

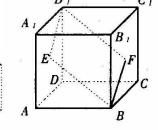
A.
$$\frac{2}{3}\sqrt{2}$$
 B. $\sqrt{2}$ C. $\frac{\sqrt{2}}{3}$ D. $\frac{4}{3}\sqrt{2}$

二. 填空题:

13. 已知棱台的上下底面面积分别为 4,16, 高为 3,则该棱台的体积为

14、正方体 ABCD-A₁B₁C₁D₁ 中, O是上底面 A B C D 中心, 若正方体的棱长为 a, 则三棱锥 O-AB₁D₁的体积为_____.

15.如图, $E \setminus F$ 分别为正方体的面 $ADD_1A_1 \setminus \mathbb{D}$ 的中心,则四边形 BFD_1E 在该正方体的面上的射影可能是



16、若三个球的表面积之比是1:2:3,则它们的体积之比是____

17. $Rt\Delta ABC$ 中,AB=3, BC=4, AC=5 ,将三角形绕直角边 AB 旋转一周所成的几何体

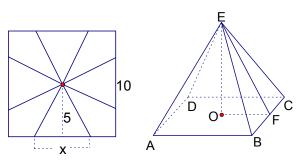
的体积为____

18、等体积的球和正方体,它们的表面积的大小关系是 $S_{
m II}$ __ $S_{
m II,Ta}$

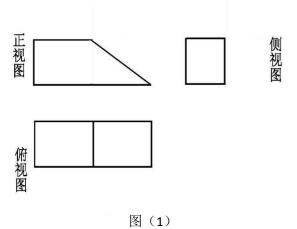
三. 解答题:

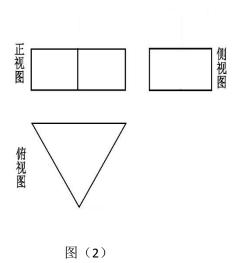
19.有一个正四棱台形状的油槽,可以装油190L,假如它的两底面边长分别等于60cm和40cm,求它的深度为多少cm?

20、一块边长为 **10** cm 的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V与x的函数关系式,并求出函数的定义域.



21. 己知两个几何体的三视图如下,试求它们的表面积和体积。单位: CM





22. 养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12M,高4M。养路处拟建一个更大的圆锥形仓库,以存放更多食盐。现有两种方案:一是新建的仓库的底面直径比原来大4M(高不变);二是高度增加4M(底面直径不变)。

- (1) 分别计算按这两种方案所建的仓库的体积;
- (2) 分别计算按这两种方案所建的仓库的表面积;
- (3) 哪个方案更经济些?

第 11 讲 空间向量及其坐标表示

一、选择题

1.	在平行六面体 ABCD-	$-A_1B_1C_1D_1$ 中,设 \overline{AC}	$\vec{z}_1 = \vec{z}_1$	$x\overrightarrow{AB} + 2y\overrightarrow{BC} + 3z$	$\overline{CC_1}$, $\bigcup x+y+z$	·= (>
	A. 1	3		<u>5</u> 6	D. $\frac{11}{6}$		
2.	设 $a=(x, 4, 3), b$	y = (3, 2, z),	//b,	则 xz 的值为		()
	A. 9	В. —9	C.	4	D. $\frac{64}{9}$		
3.	已知 A (1,2,-1) 关于	-面 <i>xoy</i> 的对称点为 <i>E</i>	B,而	可 B 关于 x 轴对称	的点为 C ,则 \overline{BC}	. = (,
	A. (0, 4, 2) C. (0, 4, 0)			(0, -4, -2) (2, 0, -2)			
4.	在四面体 O—ABC 中	, 是 <i>M</i> 在 <i>OA</i> 上, 且	. <i>OM</i>	J=2MA,N为BC	中点,则 \overrightarrow{MN} =	(>
	A. $\frac{1}{2}\overrightarrow{OA} - \frac{2}{3}\overrightarrow{OB} + \frac{1}{2}\overrightarrow{OB}$	\overrightarrow{DC}	В.	$\frac{1}{2}\overrightarrow{OA} + \frac{1}{2}\overrightarrow{OB} - \frac{2}{3}\overrightarrow{OB}$	\overrightarrow{C}		
	C. $-\frac{2}{3}\overrightarrow{OA} + \frac{1}{2}\overrightarrow{OB} + \frac{1}{2}$	\overline{OC}	D.	$\frac{2}{3}\overrightarrow{OA} + \frac{2}{3}\overrightarrow{OB} - \frac{1}{2}\overrightarrow{OB}$	\overrightarrow{DC}		
5.	已知 $a=3i+2j-k$, b	b=i-j+2k,则 $5a$ 与 B. -3			D15	()
6.	设空间四点 O , A , B	P, B , B , B , B , B , B	1+t	4B, 其中 0 <t<1< th=""><th>,则有</th><th>(</th><th>)</th></t<1<>	,则有	()
	A. 点 <i>P</i> 在线段 <i>AB</i>			点 P 在线段 AB			
7.	C. $\triangle P$ 在线段 BA 已知向量 $a=(1,1,1)$	的延长线上 0), <i>b</i> = (-1, 0, 2),				于(>
	A. 1	B. $\frac{1}{5}$	C.	<u>3</u> 5	D. $\frac{7}{5}$		
8.	设 A 、 B 、 C 、 D 是空间	不共面的四点,且满,	足 <u>—</u> 足 <u>A</u>	$\overrightarrow{B} \cdot \overrightarrow{AC} = 0, \overrightarrow{AC} \cdot \overrightarrow{AC}$	$\overrightarrow{AD} = 0, \overrightarrow{AB} \cdot \overrightarrow{AD}$	=0,	贝
	B、 C 、 D 三点构成				()		
	A. 直角三角形	B. 锐角三角形	C.	钝角三角形	D. 形状不能确定	定	
9.	若向量 \overrightarrow{MA} , \overrightarrow{MB} , \overrightarrow{MC}	的起点与终点 M 、 A 、	. В.	C互不重合且无	三点共线,且满足	足下列:	关
	系(0 为空间任一点),则能使向量 <i>MA</i> , <i>I</i>	\overrightarrow{MB} ,	\overrightarrow{MC} 成为空间一组	且基底的关系是	()
	A. $\overrightarrow{OM} = \frac{1}{3}\overrightarrow{OA} + \frac{1}{3}\overrightarrow{OA}$	$\overrightarrow{OB} + \frac{1}{3}\overrightarrow{OC}$	В.	$\overrightarrow{MA} \neq \overrightarrow{MB} + \overrightarrow{MC}$	\vec{c}		
	C. $\overrightarrow{OM} = \overrightarrow{OA} + \frac{1}{3}\overrightarrow{OA}$	$\vec{B} + \frac{2}{3} \overrightarrow{OC}$	D.	$\overrightarrow{MA} = 2\overrightarrow{MB} - \overrightarrow{M}$	$\overrightarrow{\mathit{IC}}$		

10. 已知 $a=(\cos\alpha,1,\sin\alpha)$, $b=(\sin\alpha,1,\cos\alpha)$,且 $\sin\alpha\neq\cos\alpha$,则向量 a+b 与 a-b 的夹角是()

A. 0°

B. 30°

C. 60°

D. 90°

二、填空题

- 11. 已知 a=(2,-1,2),b=(2,2,1),则以 a,b 为邻边的平行四边形的面积为______.
- 12. 与向量 a=(2,-1,2) 共线,且满足方程 $a\cdot x=-18$ 的向量 x=_____.
- 13. 若点 $A \setminus B$ 的坐标为 $A(3\cos\alpha, 3\sin\alpha, 1) \setminus B(2\cos\theta, 2\sin\theta, 1)$ 则 $|\overrightarrow{AB}|$ 取值范围______.
- 14. 已知 G 是 $\triangle ABC$ 的重心,O 是空间与 G 不重合的任一点,若 \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = $\lambda \overrightarrow{OG}$, 则 λ =____.
- 15. 已知 $a=(a_1,a_2,a_3), b=(b_1,b_2,b_3),$ 且|a|=5, |b|=6, $a\cdot b=30,$ 则 $\frac{a_1+a_2+a_3}{b_1+b_2+b_3}=$ _____.

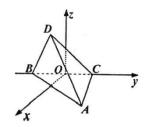
三、解答题

16. 已知 a=(1, 1, 0), b=(1, 1, 1), 若 $b=b_1+b_2$, 且 $b_1/\!/a$, $b_2\perp a$, 试求 b_1 , b_2 .

17. 如图, BC=2, 原点 $O \in BC$ 的中点, 点 A 的坐标为 $(\frac{\sqrt{3}}{2}, \frac{1}{2}, 0)$, 点 D 在平面 yoz 上,

且 $\angle BDC = 90^{\circ}$, $\angle DCB = 30^{\circ}$.

- (1) 求向量 \overrightarrow{CD} 的坐标;
- (2) 求异面直线 AD 与 BC 所成角的余弦值.

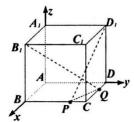


- 18. 已知 a, b 是非零的空间向量, t 是实数, 设 u=a+tb.
 - (1) 当|u|取得最小值时,求实数t的值;
 - (2) 当|u|取得最小值时,求证: $b\perp$ (a+tb).

19. 如图,已知四面体 O—ABC 中,E、F 分别为 AB, OC 上的点,且 $AE = \frac{1}{3}AB$, F 为中点,若 AB = 3, BC = 1, BO = 2, 且 $\angle ABC = 90^\circ$, $\angle OBA = \angle OBC = 60^\circ$, 求异面直线 OE 与 BF 所成角的余弦值.

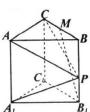
20. 已知正方体 ABCD— $A_1B_1C_1D_1$ 的棱长为 2,P,Q 分别是 BC,CD 上的动点,且 $|PQ|=\sqrt{2}$,建立如图所示的直角坐标系.

- (1) 确定 P, Q 的位置, 使得 $B_1Q\perp D_1P$;
- (2) 当 $B_1Q \perp D_1P$ 时,求二面角 C_1 —PQ—C 的正切值.



21. 如图,正三棱柱 ABC— $A_1B_1C_1$ 的各棱长都是 2,M 是 BC 的中点,P 是侧棱 BB_1 上一点,且 $A_1P\bot B_1M$.

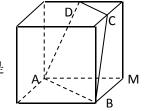
- (1) 试求 A_1P 与平面 APC 所成角的正弦;
- (2) 求点 A_1 到平面 APC 的距离.



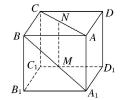
第 12 讲 空间向量在立体几何度量中的应用

一、填空题

1. 在正方体 $ABCD-A_1B_1C_1D_1$ 中,M、N分别为棱 AA_1 和 BB_1 的中点, 则 $\sin \langle \overrightarrow{CM}, \overrightarrow{D_1N} \rangle$ 的值为 .



- 2. 如图,正方体的棱长为1,C、D分别是两条棱的中点, A、B、M是 顶点,那么点 M 到截面 ABCD 的距离是 .
- 3. 正四棱锥 P-ABCD 的所有棱长都相等, E 为 PC 中点,则直线 AC 与截面 BDE 所成的角
- 4. 已知正三棱柱 ABC-A₁B₁C₁ 的所有棱长都相等, D 是 A₁C₁ 的中点,则直线 AD 与平面 B₁DC 所成角的正弦值为 .
- 5. 已知边长为 $4\sqrt{2}$ 的正三角形 ABC 中,E、F 分别为 BC 和 AC 的中点,PA上面 ABC,且 PA=2, 设平面 α 过 PF 且与 AE 平行,则 AE 与平面 α 间的距离为
- 6. 棱长都为 2 的直平行六面体 ABCD—A₁B₁C₁D₁ 中, ∠BAD=60°, 则对角线 A₁C 与侧面 DCC₁D₁ 所成角的余弦值为
- 7. 如图,在正方体 $ABCD-A_1B_1C_1D_1$ 中,棱长为 a,M、N 分别为 A_1B 和 AC上的点, $A_1M=AN=\frac{\sqrt{2}a}{3}$,则 MN 与平面 BB_1C_1C 的位置关系是_____



- 8. 将正方形 ABCD 沿对角线 BD 折起,使平面 ABD 上平面 CBD, E 是 CD 中点, 则 $\angle AED$ 的大小为
- 9. 已知 PA、PB、PC 是从 P 引出的三条射线,每两条的夹角都是 60°,则直线 PC 与平面 PAB 所成的角的余弦值为
- **10.** 正方体 *ABCD—A₁B₁C₁D₁* 中,*E、F* 分别是 *AA₁* 与 *CC₁* 的中点,则直线 *ED* 与 *D₁F* 所成角的 余弦值是

二、选择题

11. 在棱长为 2 的正方体 $ABCD - A_1B_1C_1D_1$ 中, O 是底面 ABCD 的中心, $E \times F$ 分别是 $CC_1 \times P$ AD 的中点,那么异面直线 OE 和 FD_1 所成的角的余弦值等于(

A.
$$\frac{\sqrt{10}}{5}$$

B.
$$\frac{2}{3}$$

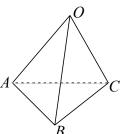
A.
$$\frac{\sqrt{10}}{5}$$
 B. $\frac{2}{3}$ C. $\frac{\sqrt{5}}{5}$ D. $\frac{\sqrt{15}}{5}$

D.
$$\frac{\sqrt{15}}{5}$$

- **12**. 在正三棱柱 *ABC-A₁B₁C₁*中,若 *AB=2*,*A A₁=1*,则点 *A* 到平面 *A₁BC* 的距离为(
- A. $\frac{\sqrt{3}}{4}$ B. $\frac{\sqrt{3}}{2}$ C. $\frac{3\sqrt{3}}{4}$ D. $\sqrt{3}$
- **13.** 在正三棱柱 ABC-A₁B₁C₁中,若 AB= $\sqrt{2}$ BB₁,则 AB₁与 C₁B 所成的角的大小为(A. 60º B. 90º C. 105º
- **14.** 设 $E \setminus F$ 是正方体 AC_1 的棱 AB 和 D_1C_1 的中点, 在正方体的 12 条面对角线中, 与截面 A_1ECF 成 60°角的对角线的数目是(
 - A. 0
- B. 2
- C. 4
- D. 6

三、解答题

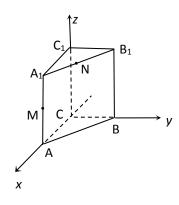
15. 如图,在空间四边形 OABC中, OA = 8 , AB = 6 , AC = 4 , BC = 5 , $\angle OAC = 45^\circ$, $\angle OAB = 60^\circ$, 求 OA = BC 的夹角的余弦值.



16. 如图,直三棱柱 $ABC - A_1B_1C_1$,底面 $\triangle ABC$ 中,CA = CB = 1, $\angle BCA = 90^\circ$,

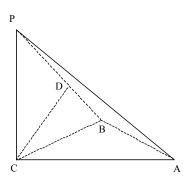
棱 $AA_1 = 2$, M、N 分别 A_1B_1 、 A_1A 是的中点.

- (1) 求 BM 的长; (2) 求 $\cos(\overrightarrow{BA_1}, \overrightarrow{CB_1})$ 的值;
- (3) 求证: $A_1B \perp C_1N$.



17. 如图,三棱锥 P—ABC 中, PC丄平面 ABC,PC=AC=2,AB=BC,D 是 PB 上一点,且 CD丄 平面 PAB.

- (1) 求证: AB 上平面 PCB;
- (2) 求异面直线 AP 与 BC 所成角的大小;
- (3)求二面角 C-PA-B 的大小的余弦值.

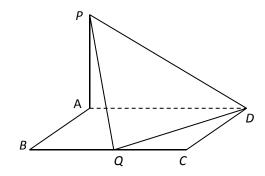


18. 如图所示,已知在矩形 *ABCD* 中,*AB*=1,*BC*=α(α>0),*PA*⊥平面 *AC*,且 *PA*=1.

- (1) 试建立适当的坐标系,并写出点 P、B、D 的坐标;
- (2) 问当实数 a 在什么范围时,BC 边上能存在点 Q,

使得 PQ LQD?

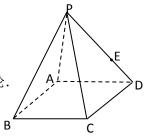
(3) 当 BC 边上有且仅有一个点 Q 使得 $PQ \perp QD$ 时,求二面角 Q-PD-A 的余弦值大小.



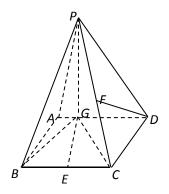
20. 如图,在底面是棱形的四棱锥 P-ABCD 中, $\angle ABC=60^\circ, PA=AC=a, PB=PD=\sqrt{2}a$,点 E

在*PD*上,且*PE*:*ED*=2:1.

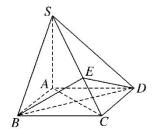
- (1) 证明 *PA* ⊥平面 *ABCD*;
- (2) 求以 AC 为棱, EAC 与 DAC 为面的二面角 θ 的大小;
- (3) 在棱 PC 上是否存在一点 F, 使 BF // 平面 AEC? 证明你的结论.



- **21.** 如图四棱锥 P—ABCD 中,底面 ABCD 是平行四边形,PG 上平面 ABCD,垂足为 G,G 在 AD 上,且 PG=4,AG= $\frac{1}{3}GD$,BG \bot GC,GB=GC=2,E 是 BC 的中点.
 - (1)求异面直线 GE 与 PC 所成的角的余弦值;
 - (2)求点 D 到平面 PBG 的距离;
 - (3)若 F 点是棱 PC 上一点,且 $DF \perp GC$,求 $\frac{PF}{FC}$ 的值.



- 22. 已知四棱锥 S-ABCD 的底面 ABCD 是正方形,SA 上底面 ABCD,E 是 SC 上的任意一点.
 - (1)求证: 平面 *EBD* 上平面 *SAC*;
 - (2)设 SA=4, AB=2, 求点 A 到平面 SBD 的距离;
 - (3)当 $\frac{SA}{AB}$ 的值为多少时,二面角 B-SC-D 的大小为 120°?

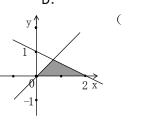


第13讲 线性规划

一、选择题

- 1. 设直线 I 的方程为: x+y-1=0,则下列说法不正确的是)
 - A. 点集 $\{(x,y) | x+y-1=0\}$ 的图形与x轴、y轴围成的三角形的面积是定值
 - B. 点集 $\{(x,y) | x+y-1>0\}$ 的图形是 I 右上方的平面区域
 - C. 点集 $\{(x,y)| -x-y+1<0\}$ 的图形是I左下方的平面区域
 - D. 点集 $\{(x,y) | x+y-m=0, (m \in R)\}$ 的图形与x轴、y轴围成的三角形的面积有最小值
- 2. 已知 x, y 满足约束条件 $\begin{cases} y \le x \\ x+y \le 1, \end{cases}$ 则 z = 2x + y 的最大值为
 - A. 3
- C. 1
- 3. 如果函数 $y = ax^2 + bx + a$ 的图象与 x 轴有两上交点,则点(a,b)在 aOb 平面上的区 域(不包含边界)为)

- 4. 图中的平面区域(阴影部分包括边界)可用不等式组表示为
 - A. $0 \le x \le 2$
- $\begin{cases} x + 2y 2 \le 0 \\ \sqrt{x} > \sqrt{y} \end{cases}$



- 5. 不等式组 $\begin{cases} y < x \\ x + y \le 1 \end{cases}$, 表示的区域为 D, 点 P₁ (0, -2), P₂ (0, 0), 则
 - A. $P_1 \notin D \coprod P_2 \notin D$

B. $P_1 \notin D \coprod P_2 \in D$

- C. $P_1 \in D \coprod P_2 \notin D$
- D. $P_1 \in D \coprod P_2 \in D$
- 6. 已知点 $P(x_0, y_0)$ 和点 A(1, 2) 在直线 l:3x+2y-8=0 的异侧,则)
 - A. $3x_0 + 2y_0 > 0$

B. $3x_0 + 2y_0 < 0$

	$C. 3x_0 + 2y_0 < 8$		D. $3x_0 + 2$	$2y_0 > 8$		
7.	已知点 P (0, 0), Q (1	, 0), R (2, 0),	S (3, 0),	则在不等式 $3x+$	<i>y</i> -6≥0表示的	内
	平面区域内的点是				()
	A. P. Q B.	Q、R	C. R _N S	D. S. F		
8.	在约束条件 $\begin{cases} x - y - 1 \le \\ x + y \le 1 \\ x \ge 0 \end{cases}$	0 下,则目标函数	z = 10x + y	的最优解是	()
	A. (0, 1), (1, 0)		B. (0, 1)	, (0, -1)		
	C. (0, -1), (0, 0)		D. (0, -1)), (1, 0)		
9.	满足 $ x + y \le 2$ 的整点的	的点 (x, y) 的个	数是		()
	A. 5 B.	8	C. 12	D. 13		
10.	· 某厂生产甲、乙两种产属板,每张面积分别为种金属板可造甲、乙产的使总用料面积最省?	2m²、3 m²,用 A	种金属板可	造甲产品 3 个,Z	之产品5个,用	B 能
	A. A 用 3 张, B 用 6 张	Ŕ	B. A用4引	长, B 用 5 张		
	C. A 用 2 张, B 用 6 张	É	D. A用3点	胀,B用5张		
二、	、填空题					
11.	. 表示以 A (0, 0), B (2	2, 2), C (2, 0)	为顶点的三	角形区域(含边界	·)的不等式组是	1
12.	. 已知点 P (1, -2) 及其关	于原点的对称点均	匀在不等式2	2x - by + 1 > 0表表	示的平面区域内	,
	则 b 的取值范围是		·			
13.	. 已知点(<i>x</i> , <i>y</i>)在不等	式组 $\begin{cases} x \le 2 \\ y \le 2 \\ x + y \ge 2 \end{cases}$	示的平面区域	\mathbf{h} 内,则 $\mathbf{x} + \mathbf{y}$ 的取	值范围为	
14.	. 不等式 x + y ≤1 所表:	示的平面区域的面	「积是 <u></u>			
三、	、解答题					
	$\int x-2y+4$	4≥0				
15.	. 画出不等式组 ${x \le y}$	所表示的平面	区域.			
	$x+2\geq 0$					

16. 求由约束条件
$$\begin{cases} x+y \leq 5 \\ 2x+y \leq 6 \end{cases}$$
 确定的平面区域的面积 $S_{\text{阴影部分}}$ 和周长 $C_{\text{阴影部分}}$. $x \geq 0, y \geq 0$

17. 求目标函数
$$z=10x+15y$$
 的最大值及对应的最优解,约束条件是
$$\begin{cases} x+2y \leq 12\\ 2x+3y \geq 12\\ 0 \leq x \leq 10\\ y \geq 0 \end{cases}.$$

18. 设
$$z = 2x + y$$
, 式中变量 x, y 满足条件
$$\begin{cases} x \ge 1 \\ y \ge 1 \end{cases}$$
, 求 z 的最小值和最大值.
$$\begin{cases} x \ge 1 \\ x + 3y \ge 6 \\ x + y \le 6 \end{cases}$$

19. A市、B市和C市分别有某种机器 10 台、10 台和 8 台. 现在决定把这些机器支援给 D市 18 台, E市 10 台. 已知从 A市调运一台机到 D市、E市的运费分别为 200 元和 800元;从 B市调运一台机器到 D市、E市的运费分别为 300 元和 700元;从 C市调运一台机器到 D市、E市的运费分别为 400元和 500元. 设从 A市调 x 台到 D市,B市调 y 台到 D市,当 28 台机器全部调运完毕后,用 x、y 表示总运费 W (元),并求 W 的最小值和最大值.

20. 某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需耗一级子棉2吨、二级子棉1吨;生产乙种棉纱需耗一级子棉1吨、二级子棉2吨,每1吨甲种棉纱的利润是600元,每1吨乙种棉纱的利润是900元,工厂在生产这两种棉纱的计划中要求消耗一级子棉不超过300吨、二级子棉不超过250吨.甲、乙两种棉纱应各生产多少(精确到吨),能使利润总额最大?

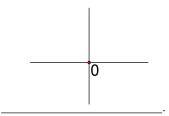
第14讲 直线和圆锥曲线的参数方程

一、填空题

1.直线: 3x-4y-9=0 与圆: $\begin{cases} x=2\cos\theta\\ y=2\sin\theta \end{cases}$, $(\theta$ 为参数)的位置关系是 _____.

2.经过点 $M_0(1,\ 5)$ 且倾斜角为 $\frac{\pi}{3}$ 的直线,以定点 M_0 到动 点 P 的位移 t 为参数的参数方程

- 3.参数方程 $\begin{cases} x = t + \frac{1}{t} \\ y = -2 \end{cases}$ (t 为参数)所表示的图形是 ______.
- 4.方程 $\begin{cases} x = 3t^2 + 2 \\ y = t^2 1 \end{cases}$ (t 是参数)的普通方程是______.
- 5.画出参数方程 $\begin{cases} x = \frac{1}{t} \\ y = \frac{1}{t} \sqrt{t^2 1} \end{cases}$ (t 为参数) 所表示的曲线



6.已知动园: $x^2 + y^2 - 2ax\cos\theta - 2by\sin\theta = 0$ (a,b是正常数 , $a \neq b,\theta$ 是参数),则圆心的轨迹是_____.

8.直线 $\begin{cases} x = 2 + 2t \\ y = -1 + t \end{cases}$ (t 为参数)上对应 t=0, t=1 两点间的距离是______.

9.直线 $\begin{cases} x = 3 + t \sin 20^{0} \\ y = -1 + t \cos 20^{0} \end{cases}$ (t 为参数)的倾斜角是______.

10.设 r > 0,那么直线 $x \cos \theta + y \sin \theta = r(\theta$ 是常数)与圆 $\begin{cases} x = r \cos \varphi \\ y = r \sin \varphi \end{cases}$

位置关系是______.

11.直线 $\begin{cases} x = -2 - \sqrt{2}t \\ y = 3 + \sqrt{2}t \end{cases}$ (t为参数)上与点 P(-23) 距离等于 $\sqrt{2}$ 的点的坐标是______.

12.过抛物线 $y^2=4x$ 的焦点作倾斜角为 α 的弦,若弦长不超过 8,则 α 的取值范围是

二、选择题

- 13、直线: 3x-4y-9=0 与圆: $\begin{cases} x=2\cos\theta\\ y=2\sin\theta \end{cases}$ (θ 为参数)的位置关系是(
 - A. 相切
- B. 相离 C. 直线过圆心
- D. 相交但直线不过圆心
- 14、在参数方程 $\begin{cases} x = a + t \cos \theta \\ v = b + t \sin \theta \end{cases}$ (t 为参数) 所表示的曲线上有 B、C 两点,它们对应的参

数值分别为 t₁、t₂,则线段 BC 的中点 M 对应的参数值是(

$$A,\frac{t_1-t_2}{2} \qquad B,\frac{t_1+t_2}{2} \qquad C,\frac{\left|t_1-t_2\right|}{2} \qquad D,\frac{\left|t_1+t_2\right|}{2}$$

- 15、曲线的参数方程为 $\begin{cases} x = 3t^2 + 2 \\ y = t^2 1 \end{cases}$ (t 是参数),则曲线是(

 - A、线段 B、双曲线的一支 C、圆 D、射线

- 16、实数 x、y 满足 $3x^2+2y^2=6x$,则 x^2+y^2 的最大值为 ()
 - A, $\frac{7}{2}$ B, 4 C, $\frac{9}{2}$ D, 5

三、解答题

- 17、已知直线 l 经过点 P(1,1),倾斜角 $\alpha = \frac{\pi}{6}$,
- (1) 写出直线 l 的参数方程。
- (2) 设 l 与圆 $x^2 + y^2 = 4$ 相交与两点 $A \cdot B$,求点 P 到 $A \cdot B$ 两点的距离之积。

18. 求直线
$$l_1$$
: $\begin{cases} x=1+t \\ y=-5+\sqrt{3}t \end{cases}$ (t为参数) 和直线 l_2 : $x-y-2\sqrt{3}=0$ 的交点 P 的坐标,及点 P 与 $Q(1,-5)$ 的距离。

- 19. (1) 在椭圆 $\frac{x^2}{16} + \frac{y^2}{12} = 1$ 上找一点,使这一点到直线 x 2y 12 = 0 的距离的最小值。
- (2) 求椭圆 $\frac{x^2}{9} + \frac{y^2}{4} = 1$ 上一点P与定点(1,0)之间距离的最小值。

- 20. 已知点 P(x, y) 是圆 $x^2 + y^2 = 2y$ 上的动点,
- (1) 求2x+y的取值范围; (2) 若 $x+y+a \ge 0$ 恒成立,求实数a的取值范围。

- 21. 已知椭圆 $\begin{cases} x = 4\cos\theta \\ y = 5\sin\theta \end{cases}$ 上两个相邻顶点为 A、C,又 B、D 为椭圆上的两个动点,且 B、
- D 分别在直线 AC 的两旁,求四边形 ABCD 面积的最大值。

- 22.已知过点 P(1,-2),倾斜角为 $\frac{\pi}{6}$ 的直线 l 和抛物线 $x^2=y+m$
- (1)m 取何值时,直线 l 和抛物线交于两点?
- (2)m 取何值时,直线 l 被抛物线截下的线段长为 $\frac{4\sqrt{3}-2}{3}$.

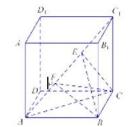
第15节 阶段测试

一、选择题

- 1. 在北纬 45°的纬度圈上有甲、乙两地,两地经度差为90°,则甲、乙两地最短距离为(设地球 的半径为 R)()
 - A. $\frac{\sqrt{2}}{4}\pi R$ B. $\frac{\pi}{3}R$ C. $\frac{\pi}{2}R$ D. $\frac{R}{3}$

- 2. 如图, 正方体 ABCD—A₁B₁C₁D₁的棱长为 1,线段 AC₁上有两个动点 E、F,

且 $EF = \frac{\sqrt{3}}{3}$ 。给出下列四个结论:



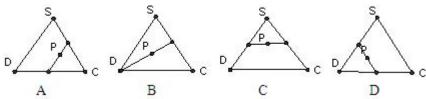
- ①BF//CE;
- \bigcirc CE \perp BD;
- ③三棱锥 E-BCF 的体积为定值;
- ④△BEF 在底面 ABCD 内的正投影是面积为定值的三角形;

其中,正确结构的个数是()

- A. 1
- B. 2
- C. 3
- D. 4
- 3. $\vec{a} = (2, 2, 0), \vec{b} = (1, 3, z), \langle \vec{a}, \vec{b} \rangle = 60^{\circ}, \text{ Myz} = ($

- D. ± 22
- 4. 已知直线 1、m 、n 与平面 α 、β 给出下列四个命题:
 - ① 若 m//1, n//1, 则 m//n; ②若 m Δ α, m//β, 则 α Δ β;

 - ③若 m// α, n// α, 则 m// n ④若 m L β, α L β, 则 m// α。
 - 其中,假命题的个数是()
- B. 2
- С.
- D. 4
- 5. 如图,在正四棱锥 S-ABCD 中, E 是 BC 的中点, P 点在侧面 ΔSCD 内及其边界上运动,并且 总是保持 $PE \perp AC$. 则动点 P 的轨迹与 $\triangle SCD$ 组成的相关图形最有可能的是(



- 6. M 是空间直角坐标系 Oxyz 中任一点 (异于 O), 若直线 OM 与 xOy 平面, yoz 平面, zox 平面所 成的角的余弦值分别为 p, q, r, 则 $p^2+q^2+r^2=($

- B. 1 C. 2 D. $\frac{9}{4}$
- 7. 底面是正三角形,且每个侧面是等腰三角形的三棱锥是(
 - A. 一定是正三棱锥
- B. 一定是正四面体
- C. 不是斜三棱锥
- D. 可能是斜三棱锥
- 8. 在平行六面体 $ABCD A_1B_1C_1D_1$ 中, 点 M 为 AC 与的 BD 的交点, $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{AD} = \overrightarrow{b}$, $\overrightarrow{A_1A} = \overrightarrow{c}$, 则下列向量中与 $\overrightarrow{B_1M}$ 相等的是()
 - A. $-\frac{1}{2}\vec{a} + \frac{1}{2}\vec{b} + \vec{c}$

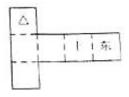
B. $\frac{1}{2}\vec{a} + \frac{1}{2}\vec{b} + \vec{c}$

C.
$$\frac{1}{2}\vec{a} - \frac{1}{2}\vec{b} + \vec{c}$$

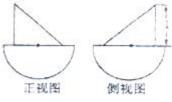
D.
$$-\frac{1}{2}\vec{a} - \frac{1}{2}\vec{b} + \vec{c}$$

- 9. 一个正方体的顶点都在球面上,它的棱长为 2cm,则球的半径是() cm.
 - A. 1
- $R \sqrt{2}$
- c. $\sqrt{3}$
- 10. 纸制的正方体的六个面根据其方位分别标记为上、下、东、南、 西、北。现有沿该正方体的一些棱将正方体剪开、外面朝上展平,

得到右侧的平面图形,则标"△"的面的方位是(



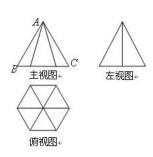
- A. 南
- B. 北
- C. 西
- D. 下
- 11. 一个二面角的两个面分别垂直于另一个二面角的两个面,那么这两个二面角(
 - A. 相等
- B. 互补
- C. 相等或互补
- D. 不能确定
- 12. 已知某几何体的三视图如图所示,其中,正视图,侧视图 均是由三角形与半圆构成, 俯视图由圆与内接三角形构成, 根据图中的数据可得此几何体的体积为(



- A. $\frac{\sqrt{2}}{3}\pi + \frac{1}{2}$ B. $\frac{4}{3}\pi + \frac{1}{6}$
- C. $\frac{\sqrt{2}}{6}\pi + \frac{1}{6}$ D. $\frac{2}{3}\pi + \frac{1}{2}$

二、填空题

- 13. 己知四面体 P-ABC 中,PA \perp 平面 ABC, $\angle ABC = 90^{\circ}$,则该四面体的表面共有 个直 角三角形.
- 14. 棱长为 1 的正方体 *ABCD A*₁*B*₁*C*₁*D*₁ 中 *A*₁*C*₁ 到面 ABCD 的距 离为
- 15. 一个几何体的三视图如图所示,其中主视图中 ΔABC 是边长为 2的正三角形,俯视图为正六边形,那么该几何体的左视图的面 积为



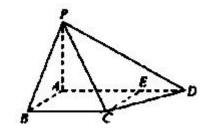
- 16. 以下 4 个命题其中正确的命题是_
- (1) 如果一个几何体的三视图是完全相同的,则这个几何体是正方体;
- (2) 如果一个几何体的主视图和俯视图都是矩形,则这个几何体是长方体;
- (3) 如果一个几何体的三视图都是矩形,则这个几何体是长方体;
- (4) 如果一个几何体的主视图和左视图都是等腰梯形,则这个几何体是圆台。

三、解答题

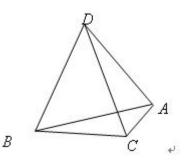
17. 已知圆台的上下底面半径分别是2、5,且侧面面积等于两底面面积之和,求该圆台的母线长.

18. 如图, 四棱锥 P-ABCD 中, PA⊥底面 ABCD, AB⊥AD, 点 E 在线段 AD 上, 且 CE // AB。

- (1) 求证: CE 上平面 PAD;
- (2) 若 PA=AB=1,AD=3,CD= $\sqrt{2}$, \angle CDA=45° , 求四棱 锥 P–ABCD 的体积

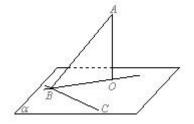


- 19. 如图,A,B,C,D 为空间四点.在 $\triangle ABC$ 中,AB=2, $AC=BC=\sqrt{2}$.等边三角 形 ADB 以 AB 为轴运动.
- (I) 当平面 ADB 上平面 ABC 时,求 CD ; (II) 当 $\triangle ADB$ 转动时,是否总有 $AB \perp CD$? 证明你的结论.



20. 如图,已知 AB 是平面 α 的一条斜线, B 为斜足, $AO \perp \alpha$, O 为垂足, BC 为 α 内的一条直线,

 $\angle ABC = 60^{\circ}$, $\angle OBC = 45^{\circ}$, 求斜线 AB 和平面 α 所成

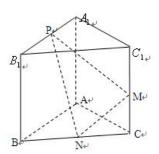


21. 如图,已知三棱柱 $ABC - A_1B_1C_1$ 的侧棱与底面垂直,

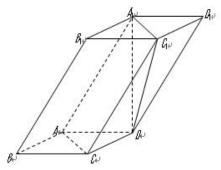
$$AA_1 = AB = AC = 1$$
, $AB \perp AC$, $M \not\in CC_1$ 的中点,

N 是 BC 的中点,点 P 在直线 A_1B_1 上,且满足 $\overrightarrow{A_1P} = \lambda \overrightarrow{A_1B_1}$.

- (1) 当 λ 取何值时,直线PN与平面ABC所成的角 θ 最大?
- (2) 若平面 PMN 与平面 ABC 所成的二面角为 45° ,试确定点 P 的位置.



- 22. 如图,四棱柱 $ABCD-A_1B_1C_1D_1$ 中, A_1D 上平面 ABCD ,底面 ABCD 是边长为1的正 方形,侧棱 $AA_1=2$.
- (1) 求证: C_1D // 平面 ABB_1A_1 ;
- (2) 求直线 BD_1 与平面 A_1C_1D 所成角的正弦值.



第16节 二项式定理

一、选择题

1. 甲班有四个小组,每组 10 人,乙班有 3 个小组,每组 15 人,现要从甲、乙两班中选 1 人担任校团委部,不同的选法种数为()

- B. 84
- C. 85

- 2. 6人站成一排, 甲、乙 、丙三人必须站在一起的排列种数为 (
 - B. 72

D. 144

3. 若 $(ax-1)^5$ 的展开式中 x^3 的系数是 80,则实数 a 的值是 ()

- A. 2
- B. 2

- C. $\sqrt[3]{4}$
- D. $2\sqrt{2}$

4. $C_6^1 + C_6^2 + C_6^3 + C_6^4 + C_6^5$ 的值为(

- B. 62
- C. 63

D. 64

5. 不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁两种不能排 在一起,则不同的排法种数共有()

- B. 20种
- C. 24 种
- D. 48 种

(

)

- 6. 用数字 1, 2, 3, 4, 5 组成的无重复数字的四位偶数的个数为
- A. 8

- B. 24
- C. 48

D. 120

7. 从 4 名男生和 3 名女生中选出 4 人参加某个座谈会, 若这 4 人中必须既有男生又有女生, 则不同的选法共有 (

- A. 140 种
- B. 34种
- C. 35 种
- D. 120 种

A. 4

- B. 6
- C. 8

D. 10

9. 从10名大学生毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入 选的不同选法的种数位()

- A. 85
- B. 56

C 49

D. 28

10. 甲、乙两人从 4 门课程中各选修 2 门,则甲、乙所选的课程中恰有 1 门相同的选法有

- A. 6种
- B. 12 种
- C. 24 种
- D. 30种

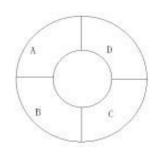
11. 如图: 一环形花坛分成 A、B、C、D 四块,

现有4种不同的花供选种,要求在每块里中一种花,

且相邻的两块种不同的花,则不同的种法总数为(

- A. 96 B. 84 C. 60 D. 48

选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两 项工作,其余三人均能从事这四项工作,则不同的选派方案共有()



1111	+44	→
华谄	犁(目

A. 36 种

B. 12 种

C. 18 种

D. 48 种

二、填空题

13. 已知 $C_{10}^x = C_{10}^{3x-2}$,则 x=______.

14. 2 位男生和 3 位女生共 5 位同学站成一排,若男生甲不站两端,3 位女生中有且只有两位女生相邻,则不同排法的种数是_____.

15. 在 $(1+x)^3 + (1+\sqrt{x})^2 + (1+\sqrt[3]{x})$ 的展开式中,x 的系数为______(用数字作答).

16. 用数字 **0**, **1**, **2**, **3**, **4**, **5**, **6** 组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有______个(用数字作答).

三、解答题

17.已知 $(\sqrt{x} - \frac{2}{\sqrt[3]{x^2}})^n$ 展开式中偶数项的二项式系数之和为256,求x的系数及其二项式系数.

- 18. 有 5 名男生, 4 名女生排成一排:
- (1) 从中选出 3 人排成一排,有多少种排法?
- (2) 若男生甲不站排头,女生乙不站在排尾,则有多少种不同的排法?
- (3) 要求女生必须站在一起,则有多少种不同的排法?
- (4) 若 4 名女生互不相邻,则有多少种不同的排法?

- 19. 从7个不同的红球,3个不同的白球中取出4个球,问:
- (1) 有多少种不同的取法?
- (2) 其中恰有一个白球的取法有多少种?
- (3) 其中至少有两个白球的取法有多少种?

20. 已知
$$\left(\sqrt{x} + \frac{1}{3\sqrt{x}}\right)^n$$
展开式中偶数项二项式系数和比 $\left(a+b\right)^{2n}$ 展开式中奇数项二项式系

数和小120, 求:
$$\left(\sqrt{x} + \frac{1}{3\sqrt{x}}\right)^n$$
展开式中第 3 项的系数;

21. 在二项式 $(\frac{1}{2} + 2x)^n$ 的展开式中,

若第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项;

第17讲 期末复习

—,	选技	圣题								
1.	若 C	$C_x^7 = C_{11}^7 + C_{11}^y$, 5	则 <i>x</i> ,	y 的值分别是					()
	Α.	x = 12, y = 6	В.	x = 11, y = 7	c.	x = 11, y = 6	D.	x = 12, y	= 7	
2.	己知	直线m丄平面a	<i>t</i> ,]	直线 $n \subset $ 平面 β	,给	台出下列四个命题	:			
	17	告 $lpha/\!/eta$,则 m 」	$\lfloor n \rangle$		2	若 α \perp β ,则 m	//n;			
	37	告 $m // n$,则 $lpha$ $oxdap$	β;		4	若 $m \perp n$,则 α /	//β.			
	其中	中正确的命题有							()
	Α.	34	В.	13	c.	24	D.	12		
3.	5个	人排成一排,若力	A、 E	3、c 三人左右顺	序一	一定(不一定相邻),	那么不同排	法()
	Α.	A_5^5	В.	$A_3^3 \cdot A_3^3$	c.	$\frac{A_5^5}{A_3^3}$	D.	A_3^3		
4.	某校	高三年级举行一次	欠演	讲赛共有 10 位同	司学	参赛,其中一班有	了3 位	立,二班有	2位,	其它
	班和	有 5 位, 若采用抽	签的	的方式确定他们的)演	讲顺序,则一班有	3位	可学恰好	波排在	三一起
	(‡	指演讲序号相连)	,而	二班的 2 位同学	没有	可被排在一起的概	率为) ()	
	Α.	$\frac{1}{10}$	В.	$\frac{1}{20}$	C.	$\frac{1}{40}$	D.	$\frac{1}{120}$		
5.	一颗	骰子的六个面上。	分别	标有数字1、2、	3、	4、5、6,若以连	续拼	邓两次骰子?	分别得	引 到 的
点刻	数 m、	n 作为 P 点坐标	;,贝	则点 P 落在圆 x^2	+ y	2 = 16 内的概率为	J		()
	Α.	$\frac{1}{9}$	В.	$\frac{2}{9}$	c.	$\frac{1}{3}$	D.	$\frac{4}{9}$		
6.	坛子.	里放有3个白球,	2 个	·黑球,从中进行	不放	[回摸球. A₁表示	第一	次摸得白珥	求,A ₂	表
示统	第二次	欠摸得白球,则 A	与	A ₂ 是			()		
	Α.	互斥事件	В.	独立事件	c.	对立事件	D.	不独立事件	件	
7.	从 6	种小麦品种中选品	出 4	种,分别种植在	不同]土质的 4 块土地。	上进	行试验,已	· 知 1	号、2
号/	小麦占	品种不能在试验田	用i	这块地上种植,贝	训不	同的种植方法有			()
	Α.	144 种	В.	180 种	c.	240 种	D.	300 种		
8.	在($\frac{x}{2} - \frac{1}{\sqrt[3]{x}})$ 8的展	开云	戊 中常数项是					()
	Α.	-28	В.	- 7	c.	7	D.	28		
9.	甲、	乙两人独立地解	同一	问题, 甲解决这	个问	可题的概率是 P ₁ ,	乙解	早决这个问 题	题的概	聚是
Р2,	那么	。 其中至少有1人	解	中这个问题的概率	∞是				()

A. P_1+P_2

B. $P_1 \cdot P_2$ C. $1-P_1 \cdot P_2$ D. $1-(1-P_1)(1-P_2)$

10. 袋中有6个白球,4个红球,球的大小相同,则甲从袋中取1个是白球,放入袋中,乙 再取1个是红球的概率为)

B. $\frac{4}{15}$ C. $\frac{8}{25}$

D. $\frac{6}{25}$

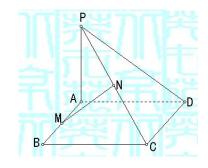
二、填空题

- 11. 乒乓球队的 10 名队员中有 3 名主力队员,派 5 名队员参加比赛, 3 名主力队员要排在 第一、三、五位置,其余7名队员选2名安排在第二,四位置,那么不同的出场安排 共有 ________种 (用数字作答).
- 12. 已知斜三棱柱 $ABC A_1B_1C_1$ 中,侧面 BB_1C_1C 的面积为 S,侧棱 AA_1 与侧面 BB_1C_1C 的距离为 d,则斜三棱柱 $ABC - A_1B_1C_1$ 的体积 V=______.
- 13. 已知一个简单多面体的各个顶点都有三条棱,那么 2F-V=
- **14.** 已知 $\left(\frac{a}{x} \sqrt{\frac{x}{2}}\right)^9$ 的展开式中, x^3 的系数为 $\frac{9}{4}$,则常数a的值为______.

三、解答题

15. 世界杯足球赛小组赛在4支球队中进行。赛前,巴西队、士耳其队、中国队等8支球队 抽签分组, 求中国队与巴西队被分在同一组的概率.

- 16. 如图, ABCD 为矩形, PA上平面 ABCD, M、N 分别是 AB、PC 的中点,
 - (1) 求证: MN//平面 PAD; (2) 求证: MN LAB;
 - (3) 若平面 PDC 与平面 ABCD 所成的二面角为 θ , 试确定 θ 的值,使得直线 MN 是异面直线 AB 与 PC 的公垂线.



17.	某单	位6个员工借助互联网开展工作,每个员工上网的概率都是0.5(相互独立).
	(1)	求至少3人同时上网的概率;
	(2)	至少几人同时上网的概率小于 0.3?
	(2)	主之九八同时工作组的城中小·1 0.3·
18.	某人	.有 5 把钥匙, 1 把是房门钥匙, 但忘记了开房门的是哪一把, 于是, 他逐把不重复
	某人 汗,	
	六开,	问:
	六开,	
	六开,	问:
	六开,	问:
	六开,	问:
	(1)	问:
	(1)	问: 恰好第三次打开房门锁的概率是多少?

19. 已知 (1+3x)"的展开式中,末三项的二项式系数的和等于 **121**,求展开式中二项式系数的最大的项及系数最大项.

- 20. 如图,在正三棱柱 $ABC A_1B_1C_1$ 中, AB = 3, $AA_1 = 4$, M 为 AA_1 的中点,P 是 BC 上一点,且由 P 沿棱柱侧面经过棱 CC_1 到 M 的最短路线长为 $\sqrt{29}$,设这条最短路 线与 CC_1 的交点为 N.求:
 - (1) 该三棱柱的侧面展开图的对角线长;
 - (2) PC 和 NC 的长;
 - (3) 平面 NMP 与平面 ABC 所成二面角(锐角)的大小 (用反三角函数表示).