高二数学精练题集

目录

第1讲	向量的运算及其坐标表示	2
第2讲	向量的数量积、平面向量的分解定理	4
第3讲	向量的运用及向量的综合	6
第4讲	直线的方程、直线的倾斜角和斜率	7
第5讲	两条直线的位置关系、点到直线的距离	9
第6讲	直线的综合	11
第7讲	曲线与方程	13
第8讲	圆的方程	15
第9讲	椭圆的标准方程和性质	17
第 10 讲	直线与椭圆的位置关系	19
第 11 讲	双曲线的标准方程和性质	21
第 12 讲	抛物线的标准方程和性质	23

第1讲 向量的运算及其坐标表示

【典例精析】

例1. 若O是 ΔABC 内一点, $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \vec{0}$,求证:O是 ΔABC 的重心。

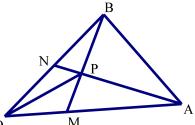
例 2. 向量 \vec{a} , \vec{b} , \vec{c} 有公共起点 O,且满足 \vec{c} = $\lambda \vec{a}$ + $\mu \vec{b}$ (λ , $\mu \in R$),证明: \vec{a} , \vec{b} , \vec{c} 三个向量的终点 A,B,C 在一条直线上的充要条件是 λ + μ = 1。

例 3. 设 \bar{a} 、 \bar{b} 、 \bar{c} 是任意非零平面向量,且 \bar{a} 、 \bar{b} 不平行,如果 x_1 、 x_2 是方程 $\bar{a}x^2 + \bar{b}x + \bar{c} = \bar{0}(x \in R)$ 的两个实数根,证明: $x_1 = x_2$.

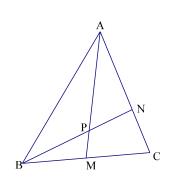
例 4. 直线经过 $\triangle ABO$ 的重心 G ,分别交边 OA 、OB 于点 P 、Q ,若 $\overline{OP}=x\overline{OA}$, $\overline{OQ}=y\overline{OB}\ (x,y\neq 0)\ ,\ \ \text{求证:}\ \ \frac{1}{x}+\frac{1}{y}=3\ .$

例 5. 已知 $\triangle OAB$,其中 $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$, M ,N 分别是边 \overrightarrow{OA} 、 \overrightarrow{OB} 上的点,且 $\overrightarrow{OM} = \frac{1}{3}\overrightarrow{a}, \overrightarrow{ON} = \frac{1}{2}\overrightarrow{b}$,设 \overrightarrow{AN} 与 \overrightarrow{BM} 相交于 P ,用向量 \overrightarrow{a} 、 \overrightarrow{b} 表示 \overrightarrow{OP}

例 6. 已知点 P 分向量 $\overrightarrow{P_1P_2}$ 所成的比为 -5 , $\overrightarrow{OP_1} = 2\vec{a} - \vec{b}$, $\overrightarrow{OP_2} = \vec{a} + \vec{b}$, 其中 $\vec{a} \cdot \vec{b}$ 为不平行的向量,若将 \overrightarrow{OP} 写成 $\lambda \vec{a} + \mu \vec{b}$ 的形式,求实数 λ 和 μ 的值。



例 7.如图, 在 $\triangle ABC$ 中, 已知点 M 是 BC 的中点, 点 N 在边 AC 上, 且 AN = 2NC, AM = BN 相交于点 P, 求 AP:PM 的值.



例 8.平面内给定三个向量 $\vec{a} = (3,2), \vec{b} = (-1,2), \vec{c} = (4,1)$

- (1) $\vec{x} \vec{3a} + \vec{b} 2\vec{c}$;
- (2) 求满足 $\vec{a} = m\vec{b} + n\vec{c}$ 的实数 $m \cdot n$;
- (3) 设 $\vec{d} = (x, y)$ 满足 $(\vec{d} \vec{c}) / / (\vec{a} + \vec{b})$,且 $|\vec{d} \vec{c}| = 1$,求 \vec{d} .

第2讲 向量的数量积、平面向量的分解定理

【典例精析】

一、 向量的数量积

例 1 在 \triangle ABC 中, \overrightarrow{AB} =(2, 3), \overrightarrow{AC} =(1, k),且 \triangle ABC 的一个内角为直角,求 k 值

例 2 已知 $\vec{a}=(2,-1)$, $\vec{b}=(m,m-1)$, 若 \vec{a} 与 \vec{b} 的夹角为锐角,求实数 m 的取值范围。

例 3 (1) 已知
$$\vec{a}$$
 = (2,4), \vec{b} = (1,1), 若 \vec{b} \perp (\vec{a} + $\lambda \vec{b}$), 则实数 λ = ____.

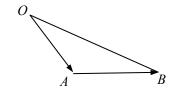
(2) 若
$$|\vec{a}|$$
=1, $|\vec{b}|$ =2, \vec{a} + \vec{b} + \vec{c} = $\vec{0}$, 且 \vec{c} $\perp \vec{a}$, 则 \vec{a} 与 \vec{b} 的夹角为_____.

例 4 设 $|\vec{a}| = |\vec{b}| = 1$, 且 $|\vec{ka} + \vec{b}| = \sqrt{3} |\vec{a} - \vec{kb}| (k > 0)$.

(1) 用k表示 $\vec{a}\cdot\vec{b}$; (2) 求证: \vec{a} , \vec{b} 不可能垂直; (3) 当 $\vec{a}\cdot\vec{b}$ 最小值, 求 \vec{a} , \vec{b} 的夹角.

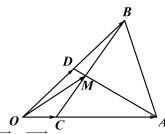
例 5.如图,已知 ΔOAB 的面积为 S,且 $\overrightarrow{OA} \cdot \overrightarrow{AB} = 2$,

- (1) 若 $1 < S < \sqrt{3}$, 求向量 $\overrightarrow{OA} = \overrightarrow{AB}$ 的夹角 θ 的取值范围;
- (2) 若 $\theta \in \left[\frac{\pi}{6}, \frac{\pi}{3}\right]$, 求 ΔOAB 的最大边长的最小值。

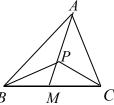


二、平面向量分解定理

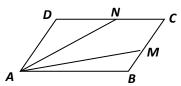
 $\overrightarrow{OB} = \overrightarrow{b}$. $\overrightarrow{AB} = \overrightarrow{a} + \overrightarrow{a} + \overrightarrow{b} = \overrightarrow{OM}$.



例 7 在 $\triangle ABC$ 中,M 是 BC 的中点,AM=2,点 P 在 AM 上,求 $\overrightarrow{PA} \cdot (\overrightarrow{PB} + \overrightarrow{PC})$ 的最小值.



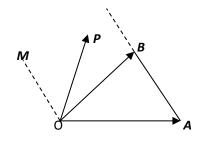
例 8 如图,在平行四边形 ABCD 中, $\angle A = \frac{\pi}{3}$, 边 AB , AD 的长分别为 2 、 1 . 若 M 、 N 分别是边 BC 、 CD 上的点,且满足 $\frac{|\overrightarrow{BM}|}{|\overrightarrow{BC}|} = \frac{|\overrightarrow{CN}|}{|\overrightarrow{CD}|}$,求 $\overrightarrow{AM} \cdot \overrightarrow{AN}$ 的取值范围.



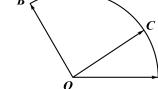
例 9 如图, OM //AB, 点 P 在由射线 OM, 线段 OB 及 AB 的延长线围成的区域内 (不含边

界)运动,且 $\overrightarrow{OP} = x\overrightarrow{OA} + y\overrightarrow{OB}$.

(1) 求 x 的取值范围; (2) 当 $x = -\frac{1}{2}$ 时, 求 y 的取值范围.



例 10 如图,两个单位向量 \overrightarrow{OA} 、 \overrightarrow{OB} 的夹角为 120° ,点 C 在以 O 为圆心的圆弧 \overrightarrow{AB} 上变动. 若 $\overrightarrow{OC} = x\overrightarrow{OA} + y\overrightarrow{OB}$, $x, y \in R$, 求 x + y 的最大值.



第3讲 向量的运用及向量的综合

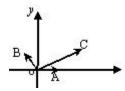
【典例精析】

- 一、几何应用
- 例 1. 求等腰直角三角形中两直角边上的中线所成的钝角的度数。

例 2. 已知
$$\triangle ABC$$
, AD 为中线, 求证 $AD^2 = \frac{1}{2} \left(AB^2 + AC^2 \right) - \left(\frac{BC}{2} \right)^2$

例 3. 如图, $\left|\overrightarrow{OA}\right| = \left|\overrightarrow{OB}\right| = 1$, \overrightarrow{OA} 与 \overrightarrow{OB} 的夹角为 120° , \overrightarrow{OC} 与 \overrightarrow{OA} 的夹角为 30° , $\left|\overrightarrow{OC}\right| = 5$,

用 \overrightarrow{OA} , \overrightarrow{OB} 表示 \overrightarrow{OC} .



二、代数应用

- **例 4**. 在直角坐标平面中,已知点 $P_1(1,2)$, $P_2(2,2^2)$, $P_3(3,2^3)$, $\cdots P_n(n,2^n)$,其中 n 是正整数, 对平面上任一点 A_0 , 记 A_1 为 A_0 关于点 P_1 的对称点, A_2 为 A_1 关于点 P_2 的对称点, \cdots , A_n 为 A_{n-1} 关于点 P_n 的对称点.
 - (1) 求向量 $\overrightarrow{A_0A_2}$ 的坐标; (2) 对任意偶数 n,用 n 表示向量 $\overrightarrow{A_0A_n}$ 的坐标.
- **例** 5. 设x轴、y轴正方向上的单位向量分别是 \vec{i} 、 \vec{j} ,坐标平面上点 A_n 、 $B_n(n \in N^*)$ 分

别满足下列两个条件: ①
$$\overrightarrow{OA_1} = \vec{j}$$
 且 $\overrightarrow{A_n A_{n+1}} = \vec{i} + \vec{j}$; ② $\overrightarrow{OB_1} = 3\vec{i}$ 且 $\overrightarrow{B_n B_{n+1}} = \left(\frac{2}{3}\right)^n \times 3\vec{i}$.

- (1) 求 $\overrightarrow{OA_n}$ 及 $\overrightarrow{OB_n}$ 的坐标;
- (2)若四边形 $A_n B_n B_{n+1} A_{n+1}$ 的面积是 a_n , 求 $a_n \left(n \in N^* \right)$ 的表达式;
- (3) 对于(II)中的 a_n ,是否存在最小的自然数M,对一切 $\left(n \in N^*\right)$ 都有 $a_n < M$ 成立?若存在,求M:若不存在,说明理由.

第4讲 直线的方程、直线的倾斜角和斜率

【典例精析】

例 1、已知直线l过点A(1,2),它的一个方向向量为 $\overline{d}=(2,3)$,直线l 过点B(3,3),试分别求满足下列条件的直线l 的方程(不要求化成一般式)

- (1) 直线l与直线l垂直;
- (2) 直线l与直线l平行;
- (3) 直线l 的倾斜角比直线l 的倾斜角大 $\frac{\pi}{4}$;
- (4) 点 A(1,2) 到直线 l 的距离最大.

例 2、已知直角坐标平面内三点 A(m,1), B(2m,4), C(4,10) 共线, 求实数 m 的值.

例 3、(1) 求直线 $x-y\cdot\cos\alpha+1=0$ ($\alpha\in R$) 的倾斜角 θ 的取值范围;

(2) 求直线 $x + \cos \theta \cdot y + 1 = 0, \theta \in [0, \pi]$ 的斜率和倾斜角.

例 4、已知直线经过点 P(1,2),且分别与 x,y 轴的正半轴交于 A、 B 两点,求:

(1) |OA| + |OB| 的最小值; (2) $|AP| \cdot |BP|$ 的最小值.

例 5、已知直线的斜率为 $\frac{1}{2}$,且与坐标轴围成的三角形面积为 5,求直线的方程.

例 6、若矩形 ABCD 的边 AB 所在直线方程为 3x+4y-8=0 , 顶点 B 的坐标为 (0,2) , 点 D 的坐标为 $(5,\frac{9}{2})$, 求:

- (1) 边 CD、BC 所在的直线方程;
- (2) 对角线 AC 所在的直线方程.

例 7、已知点 P 是直线 3x-y=0 上位于第一象限的点,M(3,2) 为一定点,直线 PM 交 x 轴于点 Q,求 ΔPOQ 面积的最小值及此时的直线 PQ 的方程.

第5讲 两条直线的位置关系、点到直线的距离

【典例精析】

例 1、求直线 4x + y - 1 = 0 关于点 M(2,3) 对称的直线方程.

例 2、已知直线l经过坐标原点,当三点 A(1,2), B(3,1), C(2,3) 到直线l 的距离的平分和最大时,求直线l 的方程.

例 3、若平行四边形 OABC 的三个顶点坐标为 O(0,0) 、 A(3,1) 、 C(-1,3)

- (1) 求B点的坐标;
- (2) 若与x轴的夹角为30°的一条直线把平行四边形OABC的面积分为相等的两部分,求直线I的方程.

例 4、求过点(1,-3)且与直线2x-13y+8=0平行的直线方程.

例 5、求过点(11,-5)且与直线4x-3y-17=0垂直的直线方程.

例 6、求两条直线 $x + \sqrt{3}y - 5 = 0$ 与 3x + 1 = 0 之间的夹角.

例 7、在 $\triangle ABC$ 中, A(-1,5) , B(0,-1) , $\angle C$ 平分线所在直线方程为 x+y-2=0 ,求 AC 所在直线方程.

例 8、两条平行线分别过点 A(1,0), B(0,5) 且距离为 5,求两条直线的方程.

例 9、已知直线 3x-4y+5=0 与 l 关于直线 x+y=0 对称,求 l 的方程.

例 10、当 a 为何值时,三条直线 l_1 : x-y+1=0 , l_2 : ax+y-2=0 , l_3 : x+2ay+2a=0 能构成三角形?

第6讲 直线的综合

【典例精析】

例 1、已知直线 l_1 : y = kx + 2k + 1 与 l_2 : $y = -\frac{1}{2}x + 2$ 的交点在第一象限,求实数 k 的取值范围.

例 2、(1) 求点 (a,a^2) 到直线 l:2x-y-2=0 距离的最小值;

(2) 若点 (a,a^2) 与原点在直线l: x-y+2=0的同侧,求a的取值范围.

例 3、求与点 P(4,1) 关于直线 l:3x-2y+3=0 对称的点 Q 的坐标.

例 4、求与已知直线 l_1 : 2x+3y-6=0 关于点 P(1,-1) 对称的直线 l_2 的方程.

例 5、已知直线 l_1 : $y = \frac{x}{2} - 1$ 与直线 l_2 关于直线 l: y = 2x - 4 对称,求直线 l_2 的方程.

例 6、已知过定点 P(2,4) 的两条互相垂直的直线 l_1 与 l_2 , l_1 与 y 轴正半轴交于点 A, l_2 与 x 轴正半轴交于点 B,试用解析式将这两条直线及两坐标轴正半轴围成的四边形的面积 S 表示成直线 l_1 的斜率 k 的函数.

例 7、在直角坐标平面中,已知 A(1,2), B(a+2,a+2), C(a,2a) 三点,试判断是否存在分别满足下列条件的实数 a.若存在,则求出 a,若不存在,则说明其理由.

- (1) *A*, *B*, *C* 三点共线;
- (2) A,B,C 三点在直线 l:x-2y-2=0 的同侧,且三角形 ABC 的面积为 5;
- (3) A,B,C 三点在直线 l:x-2y-2=0 的同侧,且三角形 ABC 的面积最大.

第7讲 曲线与方程

典例精析:

- 1. 若曲线 $x^2 y^2 + 2x 3y + 4a^2 + 6a = 0$ 经过原点,则实数 a 的值是______
- 2. 已知曲线 L 的方程是 $(2x-y+1)\sqrt{x-3y}=0$, 在以下四个点 O(0, 0),A(0,1),B(-2, -3), C(1.5, -4)中,位于曲线上的点是
- 3. 给出以下命题:
 - (1) 以点 A(3, 0),B(0, 4)为端点的线段 AB 的方程是 4x+3y-12=0 $(x \ge 0)$
 - (2) 到 x 轴, y 轴距离之比等于 2 的动点的轨迹方程是 y=2x
 - (3) 方程 $x = \sqrt{1-y^2}$ 的曲线是以原点为圆心,1 为半径的圆
 - (4) 与两坐标轴都相切的圆的圆心轨迹方程是 $x^2 y^2 = 0$

其中错误命题的序号是_____

- 4. 设点 A(2,-1), 若动点 P 的轨迹方程是 f(x,y)=0,则线段 AP 中点 Q 的轨迹方程是_____
- 5. 设定点 M(-1, 2),N(5, 2),动点为 P, (1) $\overline{A}^{|PM|+|PN|=6}$,则动点 P 的轨迹方程是______
 (2) $\overline{A}^{|PM|-|PN|=6}$,则动点 P 的轨迹方程是_____
- 6.已知:"曲线 C 上的点的坐标都满足方程 F(x,y)=0"是真命题,则下列命题中,
 - (1) 不是曲线 C上的点的坐标一定不满足方程 F(x,y)=0
 - (2)坐标满足方程 F(x,y)=0 的点都在曲线 C 上
 - (3) 曲线 C 是方程 F(x,y)=0 的曲线
 - (4) 方程 F(x,y)=0 的曲线不一定是曲线 C

其中真命题是_____

7.直线
$$y = x + \frac{3}{2}$$
被曲线 $y = \frac{1}{2}x^2$ 截得的弦长为 _____

8.设点P(x,y)满足 $1 \le x \le 4, -6 \le y \le -2,$ 则直线 OP的斜率 k的取值范围是 (O是原点)

- 9.求适合下列条件的动点的轨迹方程:
 - (1) 定长为6的线段的两个端点 A, B分别在 x轴, y轴上移动, 求线段AB中点的轨迹方程
 - (2) 动点P在x轴上方,且它到直线x+y-1=0的距离的平方等于它到y轴的距离,求P点的轨迹方程。

10.在坐标系中,动点
$$P(x,y)$$
, $Q(u,v)$ 的坐标满足 $\begin{cases} ux-vy=y-v\\ vx+uy=-x+u \end{cases}$

- (1)当点P在除去点(0,1)的y轴上运动时,作出点Q所描出的图形
- (2) 当点P在x轴上运动时,作出点Q所描出的图形。

第8讲 圆的方程

1.求以 A(-1,2), B(5,-6) 为直径两端点的圆的方程.

2.过点 A(2,-3),圆心在直线 x+2y=0 上的圆,被直线 x-y-1=0 截得的弦长为 $2\sqrt{2}$,求 圆的方程.

3.求以原点为圆心,截直线 3x+4y+15=0 所得弦长为 8 的圆的方程.

4.求与 y 轴相切,经过原点和点(3,6)的圆的方程.

5.斜率为 2 的直线 1 被圆 $x^2 + y^2 - 2y - 1 = 0$ 所載得的线段长为 $2\sqrt{2}$,求直线 1 的方程.

6.圆 $x^2 + y^2 - 8x - 2y + 12 = 0$ 内一点 A(3,0), 求过 A 的最短的弦所在直线方程.

7.已知圆 $x^2 + y^2 - x - 6y + c = 0$ 和直线 x + 2y - 3 = 0 交于 P、Q 两点,O 为原点,若 $OP \perp OQ$,求c 的值.

8.求过点 B(5,-3),而于圆 $(x-3)^2 + (y+1)^2 = 8$ 相切的切线方程.

第9讲 椭圆的标准方程和性质

1.求椭圆的标准方程

(1)已知椭圆经过两点 $A(1,-2\sqrt{2}), B(-\sqrt{3},-\sqrt{2})$, 求椭圆的标准方程.

(2)求经过点(2,3),且与椭圆 $9x^2 + 4y^2 = 36$ 有共同焦点的椭圆的标准方程.

2.求轨迹方程

(1)点 P 是椭圆 $\frac{x^2}{9} + \frac{y^2}{3} = 1$ 上的动点,O 为坐标原点,点 Q 在线段 OP 上,且 Q 分 \overrightarrow{OP} 所成比等于 2,求点 Q 的轨迹方程.

(2)已知圆 $x^2 + y^2 - 6x - 55 = 0$,动圆 M 经过定点 A(-3,0),且与已知圆相内切,求圆心 M 的轨迹方程.

3.焦点三角形

(1)在椭圆 $\frac{x^2}{25} + \frac{y^2}{9} = 1$ 上是否存在点 P,使 P 与椭圆的两个焦点的连线垂直,若存在求出点 P 的坐标,若不存在说明理由.

(2)已知椭圆 $\frac{x^2}{16} + \frac{y^2}{b^2} = 1(b > 0)$ 的两焦点 F_1, F_2 在 x 轴上,P 为椭圆上任意一点,且 $\angle F_1 P F_2$ 的最大值为 $\frac{\pi}{3}$, 求 b 的值.

(3)已知椭圆 $\frac{x^2}{4} + y^2 = 1$, F_1 , F_2 是它的两个焦点,若 P 是椭圆上任一点,求 $|PF_1|^2 + |PF_2|^2$ 的最小值.

4.直线与椭圆

(1)若直线 y = kx + 2 和椭圆 $\frac{x^2}{3} + \frac{y^2}{2} = 1$ 相交于两个不同的点,求实数 k 的取值范围.

(2)过椭圆内 $\frac{x^2}{40} + \frac{y^2}{10} = 1$ 内一点 M(4,-1) 引弦 AB,使 AB 被 M 平分,求直线 AB 的方程.

第10讲 直线与椭圆的位置关系

1.过椭圆 $\frac{x^2}{9} + y^2 = 1$ 的一个焦点,且倾角为 $\frac{\pi}{6}$ 的直线交椭圆于 M、N 两点,求|MN|的长.

2.设直线 l:2x-y=b 和椭圆 $C:\frac{x^2}{75}+\frac{y^2}{25}=1$,当 b 为何取值范围时,直线和椭圆有两个公共点,并求出直线被椭圆截得的弦长.

3.已知直线 l: y=x+t 与椭圆 $\frac{x^2}{4}+y^2=1$ 交于 A、B 两点,求 $S_{\triangle AOB}$ 的最大值.

4.已知直线 y=x+1 交椭圆 $ax^2+by^2=1(a,b>0)$ 于 P、Q 两点,满足 $|PQ|=\frac{\sqrt{10}}{2}$, $OP\perp OQ$,求椭圆方程.

5.已知直线 1 与椭圆 $4x^2 + 9y^2 = 36$ 相交于 A、B 两点,弦 AB 的中点坐标为 M(1,1),求直线 1 的方程.

6.已知椭圆 $x^2 + \frac{y^2}{4} = 1$ 和直线 y = 2x + m 恒有两个不同的交点 A、B,求 AB 连线段中点 M 的轨迹方程.

7.过点 P(8,1) 引椭圆 $\frac{x^2}{25} + \frac{y^2}{9} = 1$ 的割线交椭圆于 $P \setminus Q$ 两点, 求弦 PQ 的中点 M 的轨迹方程.

8.若椭圆 $ax^2 + by^2 = 1(a, b > 0)$ 与直线 x + y = 1 交于 A、B 两点,M 为 AB 的中点,直线 OM 的斜率为 2,且 $OA \perp OB$,求椭圆方程.

第11 讲 双曲线的标准方程和性质

I双曲线的标准方程

1.已知双曲线 C 的中心在坐标原点,它的焦距为 $4\sqrt{13}$,一条渐近线方程为 2x-3y=0,求此双曲线的方程.

2.求以双曲线 $\frac{x^2}{9} - \frac{y^2}{16} = 1$ 的渐近线为渐近线,过点 $A(-6\sqrt{3}, -12)$ 的双曲线方程.

3.求以实轴长为6, 焦距为10的双曲线的标准方程.

4.实轴长为 12, 一条渐近线为 $\frac{x}{3} + \frac{y}{2} = 0$ 的双曲线的标准方程.

5.双曲线 C 与椭圆 $\frac{x^2}{27} + \frac{y^2}{36} = 1$ 有共同的焦点,它们的交点中有一个交点的纵坐标为 4,求双曲线的方程.

6.中心为原点的双曲线 C 经过点 $A(-2\sqrt{7},3), B(7,6\sqrt{2})$,求该双曲线的方程,并指出渐近线的夹角.

II 双曲线与直线

1.双曲线 $x^2 - 4y^2 = 4$ 的弦 AB 被点 M(3,-1)平分,求直线 AB 的方程.

2.已知双曲线 $2x^2 - 3y^2 = 6$,若它的一条弦 AB 被直线 y = 4x 平分,求弦 AB 的斜率.

3.求过定点(0,1)的直线被双曲线 $x^2 - \frac{y^2}{4} = 1$ 截得的弦中点轨迹方程.

4.直线 y = kx + 1 与双曲线 $3x^2 - y^2 = 1$ 相交于两点 A、B,当 k 为何值时,以 AB 为直径的 圆经过坐标原点.

5.垂直于直线 x+2y-3=0 的直线 1 被双曲线 $C:\frac{x^2}{20}-\frac{y^2}{5}=1$ 截得的弦长为 $\frac{4\sqrt{5}}{3}$,求直线 1 的方程.

- 6.已知直线 $l_1: y = kx 1$ 与双曲线 $x^2 y^2 = 1$ 的左支交于 A、B 两点
- (1)求斜率 k 的取值范围;
- (2)若直线 l_2 经过点 P(-2,0)和线段 AB 的中点 Q,且 l_2 在 y 轴上的截距为-16,求直线 l_1 的方程.

第12讲 抛物线的标准方程和性质

I抛物线的标准方程

1.求以原点为顶点,坐标轴为对称轴,且焦点在直线y = 2x - 4上的抛物线方程.

2.过抛物线 $x^2 = ay$ 的焦点 F 作 y 轴的垂线,交抛物线与 A、B 两点,若|AB| = 6,求抛物线的方程.

3.已知抛物线 C 的顶点为双曲线 $S: \frac{x^2}{9} - \frac{y^2}{16} = 1$ 的中心,抛物线 C 的焦点为双曲线 S 的焦点,求抛物线 C 的方程.

4.若抛物线 $y^2 = 2px$ 上横坐标为 4 的点到焦点的距离为 5,求则此抛物线的方程.

5.若抛物线 $y^2 = 16x$ 上一点 M 到 x 轴的距离等于 12, 求点 M 到抛物线的焦点距离.

6.已知抛物线 C 的顶点在原点,它的准线 1 经过双曲线 $S: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ 的焦点,且准线 1 与双曲线 S 交于 P(2,3)和 Q(2,-3)两点,求抛物线 C 和双曲线 S 的方程.

II 抛物线与直线

7.过点 A(2,1)作抛物线 $y^2 = 4x$ 的弦 MN,而 A 恰为 MN 的中点,求 MN 所在的直线的方程.

8.抛物线 $y = 2x^2$ 上两点 A、B,O 为坐标原点,且 $OA \perp OB$,求 $\triangle OAB$ 面积的最小值.

9.过直角坐标平面 xOy 中的抛物线 $y^2 = 2px(p>0)$ 的焦点 F 作一条倾斜角为 $\frac{\pi}{4}$ 的直线,与 抛物线相交于 A、B 两点,

- (1)用 p 表示 A、B 之间的距离;
- (2)证明 ZAOB 的大小是与 p 无关的定值,并求出这个定值.

10.已知抛物线 $y^2 = 2px$ 与圆 $(x-1)^2 + y^2 = 1$ 仅有 1 个公共点,求 p 的取值的范围.

11.求与抛物线 $y^2 = 8x$ 只有 1 个交点,并且经过点 M(2,4)的直线方程.

12.若抛物线 $y^2 = 2x$ 上存在两点关于直线 y = x + b 对称,求实数 b 的取值范围.

III 抛物线的焦点弦

*13.过抛物线 $y^2=2px(p>0)$ 的焦点 F 作弦 AB,设 $A(x_1,y_1),B(x_2,y_2)$,且 AB 与抛物线 对称轴的夹角为 α ,求证

(1)
$$x_1 x_2 = \frac{p^2}{4}$$
, $y_1 y_2 = -p^2$;

$$(2)\frac{1}{|FA|} + \frac{1}{|FB|} = \frac{2}{p};$$

(3)
$$|AB| = x_1 + x_2 + p$$
;

$$(4)|AB| = \frac{2p}{\sin^2 \alpha}.$$

14.经过抛物线 $y^2 = 4x$ 的焦点 F 作倾角为 $\frac{\pi}{3}$ 的弦 AB, 求 AB 的长.

15.已知过抛物线 $y^2 = 2px(p > 0)$ 的焦点作直线交抛物线于 $A(x_1, y_1), B(x_2, y_2)$ 两点,若 $x_1 + x_2 = 4p$,求|AB|的长.

16.过抛物线 $y^2=2px$ 的焦点,且斜率为 1 的直线交抛物线于 A、B 两点,若|AB|=8,求 抛物线的方程.